
© www.allscale.eu	

This project has received funding from
the European Union‘s Horizon 2020
research and innovation programme
under grant agreement No. 671603

Thomas	Fahringer	
University	of	Innsbruck,	Austria	

AllScale	
	
	

An	Exascale	Programming,	Mul5-objec5ve	Op5misa5on	
and	Resilience	Management	Environment	Based	on	

Nested	Recursive	Parallelism	

European	HPC	Summit	week:	EXDCI	Workshop,	Prague,	May	10,	2016	

Ireland	

© www.allscale.eu	Background	
•  Domina5ng	HPC	languages	are		

–  tailored	for	specific	architecture	designs	
–  largely	sta5c	(e.g.	fixed	number	of	threads)	

•  Most	languages	promote	flat	parallelism	like	parallel	loops,	which	
imposes	the	need	for	global	synchroniza5on	

•  Accelerator	languages	and	MPI:		
–  Low-level	style	of	programming	–	much	effort	leJ	to	the	developer	

•  Hybrid	parallel	programs	may	suffer	from	
–  hard-coded	problem	decomposiVons	schemas	
–  lack	of	coordinaVon	among	runVme	systems	

© www.allscale.eu	AllScale	Vision	
•  Single	Source	to	Any	Scale	

–  Write	each	algorithm	only	once	
•  using	a	single	model	of	parallelism	
•  AllScale	tool	chain	ports	it	to	various	architectures	

–  scale	up	and	down	for	any	scale	of	parallel	system	

•  AllScale	tool	chain	
–  integrated	dynamic	load	balancing	and	auto	tuning	

•  execuVon	Vme,	energy	consumpVon,	and	power	dissipaVon	
–  hardware	management	(e.g.	frequency	scaling)	
–  automated	fault	detecVon	and	recovery	
–  monitoring	and	profiling	tools	

•  Enable	programmers	to	be	produc5ve	on	any-scale	of	system	

© www.allscale.eu	Recursively	Nested	Parallelism	
•  Requirements	for	Exascale:	

– High	degree	of	parallelism	on	mulVple		
				levels	(node,	socket,	core,	vector,	pipeline)	
–  Localized	data	access	and	communicaVon	

•  SoluVon:	Recursively	Nested	Parallelism	
–  a	hierarchical	workload	decomposiVon	for	a	
hierarchical	hardware	infrastructure	

–  results	in	(mostly)	locally	synchronized	parallelism	
–  enables	fine-grained	resilience	

© www.allscale.eu	ConvenVonal	Flat	Parallelism	

…	global	barrier	

linear	parallel	grow
th	

How	to	map	flat	parallelism	to	a	hierarchical	parallel	architecture?	
Complex	handling	of	errors	–	global	operaVons	

Vm
e	

A	t=N	

A	t=0	
parallelism	

Vm
e	

A	t=N	

A	t=0	
parallelism	

Vm
e	

parallelism	

A	t=N	

A	t=0	

© www.allscale.eu	

…	Recursive	call	

ExponenVal	parallel	grow
th	

Recursively	Nested	Parallelism	

Global	SynchronisaVon	

Local	SynchronisaVon	

Vm
e	

space	

A	t=N	

A	t=0	

A	t=N/2	

© www.allscale.eu	

Socket	

Accelerator	

Node	

Recursively	Nested	Parallelism	

Maps	naturally	to	mul.ple	levels	of	HW	parallelism	

© www.allscale.eu	Recursively	Nested	Parallelism	

Mul.versioning	allows	adap.on	to	hardware	&	system	state	

…	Code	Versions	

© www.allscale.eu	

Hardware	EnVty	
2	

Hardware	EnVty	
3	

Hardware	EnVty	
1	

Recursively	Nested	Parallelism	

Dynamic	load	
balancing	and	
data	migra.on		

© www.allscale.eu	Recursively	Nested	Parallelism	

…	Failed	computaVon	

Isolated	
restart	

Automa.c	resilience	management	

© www.allscale.eu	Architecture	
ApplicaVons	[KTH,IBM,Numeca]	

API-aware	high-	
level	Compiler	

[UIBK]	

Unified	
RunVme	System	

[FAU]	

Standard	C
++	

Toolchain	

Desktop	
Hardware	

Small-	to	Extreme-Scale		
Parallel	Architectures	

O
nl
in
e	
M
on

ito
rin

g	
	a
nd

	A
na
ly
sis
	[K

TH
]	

Re
sil
ie
nc
e	
M
an
ag
em

en
t	

[Q
U
B]
	

Single	Source		
User	Interface	

Generic	APIs	for	
abstract	Algorithm	

DescripVons	

Development	 Tuning	&	Deployment	

Code	GeneraVon	for	
Accelerators	and		

Distributed	Memory	

Dynamic	Load,	Data	
and	Resource	
Management	

Parallel	
Hardware	

Universal	Abstract	
Machine	Model	 De

co
m
po

siV
on

	&
		

Re
st
ru
ct
ur
in
g	

Id
en

Vf
y	
&
	E
xp
re
ss
	

Pa
ra
lle
lis
m
	

Co
m
pu

ta
Vo

n	
&
	D
at
a	

M
an
ag
em

en
t	

Generic	Parallel	PrimiVves	
(C++	Template	API)	

[UIBK]	 Core	API	[UIBK]	

User-Level	API	[UIBK]	

Pilot	ApplicaVons	

Scheduler	[IBM]	

© www.allscale.eu	

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603 12	

AllScale	API	

ApplicaVons	

User-Level	API	

Core	API	

Toolchain	

ApplicaVon	
Groups	

Toolchain	
Provider	

Abstract	Domain		
Specific	PrimiVves	

Compiler	Supported	
PrimiVves	

Hardware-Oblivious	
Code	

RealizaVon	of		
PrimiVves	

© www.allscale.eu	API	

•  Based	on	C++	templates	
– Widely	used	industry	standard	

•  ObjecVves:	
– Standard	C++	tool	chains	can	be	used	to	
exploit	shared	memory	parallelism	of	AllScale	
generated	code.	

– Division	of	responsibiliVes	among:	
•  Domain,	HPC,	and	System	Level	Expert		

© www.allscale.eu	Core	API	
•  Main	PrimiVve:	rec	

	 	rec	(base_test,	base,	step)	

•  SemanVcally	equivalent	to	a	parallel	version	of:	
	

		
	

auto	fun(data)	{	
//	check	for	the	base	case	
if	(base_test(data))	return	base(data);	
//	compute	the	step	case	
return	step(data,	fun);	

}	
	

© www.allscale.eu	Example	fib()	

rec(
	[](int	x)	{	return	x	<	2;	},	
	[](int	x)	{	return	x;	},	
	[](int	x,	const	auto&	f)	{		
	 	return	f(x-1)	+	f(x-2);		
	}		

)	;	

Base	Case	Condi.on	

Base	Case	

Step	Case	

	Input	Data	

© www.allscale.eu	User-Level	API	
•  Based	on	C++	templates	

– Widely	used	industry	standard	
•  High-level	Abstrac5ons	

– N-body,	Stencil,	Branch-and-Bound,	Linear	Algebra,	
Monte	Carlo,	Dynamic	Programming,	…	

–  Recursive	data	structures	and	algorithms	developed	
by	parallelism	experts	for	domain	experts.	

•  Familiar	Primi5ves	
–  Pfor,	Map-reduce,	Async,	Containers,	…	
–  Provided	to	enable	upgrade	path	for	legacy	
applicaVons	

•  Standard	C++	tool	chains	can	be	used	to	exploit	shared	
memory	parallelism	of	AllScale	generated	code.	

© www.allscale.eu	Compiler	
•  Analyzes	rec	primiVve	usage	and	data	accesses	
•  Generates	mul5ple	code	versions	for	each	step	

–  SequenVal	
–  Shared	memory	parallel	
–  Distributed	memory	parallel	
–  Accelerator	

•  Reports	potenVal	issues	to	programmer	
–  Data	dependencies,	race	condiVons,	…	

•  Provides	addi5onal	informa5on	to	run5me	
–  E.g.	type	of	recursion	and	data	dependencies	
–  Improves	dynamic	opVmizaVon	potenVal	

© www.allscale.eu	RunVme	System	

•  Provides	an	abstract	parallel	machine	as	target	
for	compiler-generated	code	

•  Manages	distributed	resources	
– Data	locality	
–  CommunicaVon	&	synchronizaVon	
– Accelerators	
– Dynamic	load	balancing	

•  Selects	from	compiler-generated	code	versions	
– Depending	on	hardware	and	execuVon	context	

Ireland	Prof.	Dietmar	Fau	 Dr.	KonstanVnos	Katrinis	

© www.allscale.eu	MulV-ObjecVve	OpVmizaVon	

•  RunVme	Scheduler	decides:	
– where	to	place	data	
– where	to	run	which	version	of	tasks	
– how	to	configure	hardware	(e.g.	frequency)		

•  Can	be	uVlized	to	steer	execuVon	towards	
–  low	execu5on	5me	
–  low	energy	consump5on	
– capped	power	dissipa5on	

or	a	tradeoff		
of	those	

© www.allscale.eu	
Scalable	Resilience	&		

Online	Performance	Analysis	
•  Scalable	online	performance	analysis		

–  instruments,	measures,	and	analyses	Vme,	events,	energy,	
power,	and	faults	

–  integrated	with	runVme	system	as	basis	of	dynamic	
opVmizaVon	decisions	

–  integrated	with	compiler	in	order	to	provide	profiling	data	to	
developers	

–  closing	the	feedback	loop	

•  Scalable	resilience	support	
–  direcVves	and/or	compiler	analysis	to	guide	fault	tolerance	
–  monitors	distributed	execuVon	
–  support	localized,	fine-grained	restarVng	on	failures	

Prof.	Dimitrios	Nikolopoulos	 Prof.	Erwin	Laure	

© www.allscale.eu	

•  AMDADOS	(IBM	Ireland)	
–  AdapVve	Meshing	and	Data	AssimilaVon	for	the	Deep	water	Horizon	Oil	

Spill	
•  iPIC3D	(KTH,	Sweden)	

–  Implicit	ParVcle-in-Cell	code	for	Space	Weather	ApplicaVons	
•  Fine/Open	(Numeca,	Belgium)	

–  Large	Industrial	unsteady	CFD	simulaVons	

•  Objec5ve	is	to	understand	the	achieved	gain	in	their	performance	
improvements.	
–  How	=>	Data	Management?	

•  Concerns	the	data	and		sta5s5cs	about	the	result	from	the	project	
ac5vi5es	(WP5	and	WP6):	

–  	monitoring	data	(WP5)		
–  	output	data	generated	by	the	pilot	applicaVons		(WP6)	

	 21	

AllScale	pilot	applicaVons	

© www.allscale.eu	AllScale	Offer	to	HPC	Ecosystem	

•  Programming	environment	for	a	range	of	
parallel	computers	including	HPC	and	extreme	
scale	supercompuVng.	
– Compiler,	runVme	system,	online	performance	
analysis,	resilience	management	

– Programming	API	

•  Tutorials	and	training	for	our	environment.	
•  Open	source	HPC	applicaVons		

© www.allscale.eu	AllScale	Intl.	CooperaVons	

•  Joint	development	of	AllScale	runVme	system	
based	on	HPX	–	Stellar	Group	–	Lousiana	State	
University	

© www.allscale.eu	
RelaVons	with	cPPP,	SRA	and	FETHPC/

CoE	projects,	PRACE	
•  Plans	for	cooperaVon	with	CoE	POP	

– Performance	analysis	and	opVmizaVon	

•  Access	to	Prace	infrastructure	

© www.allscale.eu	Role	for	EsD	2018-2020	

•  Compare	AllScale	API	against	other	APIs	
– ProducVvity	
– Performance	and	scalability	
– Energy/runVme	trade-off	

•  Combine	all	Auto-tune	projects	to	a	single	EsD	
•  Tests	to	be	done	on	variety	of	HPC	hardware	
with	different	benchmarks	and	applicaVons	

© www.allscale.eu	AllScale	Summary	
•  Single	high	level	API	close	to	the	user	problem		

–  based	on	exisVng	language	and	familiar	C++	tool	chain	
–  in	contrast	to	low	level	and	mixed	programming	paradigms	

•  Aggressively	exploits	flexible	and	scalable	parallelism	
–  nested	recursive	parallelism	
–  supports	small	scale	to	extreme	scale	parallel	architectures	
–  in	contrast	to	convenVonal,	flat	parallelism	

•  Holis5c	compiler	and	run5me	system	
–  no	informaVon	hiding/encapsulaVon	between	different	SW	layers	
–  maintains	maximum	informaVon	across	SW	stack	

•  Resilience	and	online	performance	analysis	across	all	SW	layers	
•  Mul5-objec5ve	op5miza5on	for	run5me,	resilience,	power,	and	energy	

–  based	on	sound	theory:	pareto	front	
–  in	contrast	to	ad-hoc	approaches		

© www.allscale.eu	AllScale	ConsorVum	

