
Parallel Numerical Linear Algebra
for Future Extreme-Scale Systems
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NLAFET—Aim and Main Research Objectives

Aim: Enable a radical improvement in the performance and scalability
of a wide range of real-world applications relying on linear algebra

software for future extreme-scale systems.

Development of novel architecture-aware algorithms that expose
as much parallelism as possible, exploit heterogeneity, avoid
communication bottlenecks, respond to escalating fault rates, and
help meet emerging power constraints
Exploration of advanced scheduling strategies and runtime
systems focusing on the extreme scale and strong scalability in
multi/many-core and hybrid environments
Design and evaluation of novel strategies and software support for
both offline and online auto-tuning
Results will appear in the open source NLAFET software library



NLAFET Work Package Overview

WP1

WP2 WP3 WP4

WP5

WP6

WP7

WP1: Management and coordination
WP5: Challenging applications—a selection
Materials science, power systems, study of energy solutions, and
data analysis in astrophysics
WP7: Dissemination and community outreach
Research and validation results; stakeholder communities



Research focus—Critical set of NLA operations

WP1

WP2 WP3 WP4

WP5

WP6

WP7

WP2: Dense linear systems and eigenvalue problem solvers
WP3: Direct solution of sparse linear systems
WP4: Communication-optimal algorithms for iterative methods
WP6: Cross-cutting issues

WP2, WP3 and WP4: research into extreme-scale parallel algorithms
WP6: research into methods for solving common cross-cutting issues



WP2, WP3 and WP4 at a glance!

Linear Systems Solvers
Hybrid (Batched) BLAS
Eigenvalue Problem Solvers
Singular Value Decomposition Algorithms

Lower Bounds on Communication for Sparse Matrices
Direct Methods for (Near–)Symmetric Systems
Direct Methods for Highly Unsymmetric Systems
Hybrid Direct–Iterative Methods

Computational Kernels for Preconditioned Iterative Methods
Iterative Methods: use p vectors per it, nearest-neighbor comm
Preconditioners: multi-level, comm. reducing



Why avoid communication?
Algorithms have two costs (measured in time or energy):

1 Arithmetic (FLOPS)
2 Communication: moving data between

▸ levels of a memory hierarchy (sequential case)

▸ processors over a network (parallel case).

Extreme scale systems accentuate the need to avoid communication!



Why avoid communication?
Running time of an algorithm involve three terms:

# Flops ∗ Time per flop
# Words moved / Bandwidth
# Messages ∗ Latency

Time per flop ≪ 1 / Bandwidth ≪ Latency

Gaps growing exponential with time [FOSC]

Annual improvements
Time per flop Bandwidth Latency

59% Network 26% 15%
DRAM 23% 5%

Goal: Redesign algorithms (or invent new) to avoid communication!
Attain lower bounds on communication if possible!



Batched BLAS motivation
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Figure: Memory hierarchy of a heterogeneous system from the point of view
of a CUDA core of an NVIDIA K40c GPU with 2,880 CUDA cores.

Accelerators coprocessors, like GPUs, support high levels of parallelism.

Can achieve very high performance for large data parallel computations if CPU
handles computations on critical path.

Currently, not the case for applications that involve large amounts of data that
come in small units.



Batched BLAS

Multiple independent BLAS operations on small matrices grouped
together as a single routine
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Sample applications: Structural mechanics, Astrophysics, Direct
sparse solvers, High-order FEM simulations



WP6: Cross-cutting issues and challenges!

Extreme-scale systems are hierarchical and heterogeneous in nature!

Scheduling and Runtime Systems:
▸ Task-graph-based multi-level scheduler for multi-level parallelism
▸ Investigate user-guided schedulers: application-dependent balance

between locality, concurrency, and scheduling overhead
▸ Run-time system based on parallelizing critical tasks (Ax = λBx)
▸ Address the thread-to-core mapping problem

Auto-Tuning:
▸ Off-line: tuning of critical numerical kernels across hybrid systems
▸ Run-time: use feedback during and/or between executions on

similar problems to tune in later stages of the algorithm
Algorithm-Based Fault Tolerance:

▸ Explore new NLA methods of resilence and develop algorithms with
these capabilities.



Task-graph based scheduling and run-time systems
Express algorithmic dataflow, not explicit data movement
Blocked Cholesky tasks: POTRF, TRSM, GEMM, SYRK
PTG representation: symbolic, problem size independent
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Task-graph based scheduling and run-time system
Data flow based execution using PaRSEC (ICL-UTK)
Assigns computations threads to cores; overlaps comm. & comp.
Distributed dynamic scheduler based on NUMA nodes and data
reuse

Figure: Cholesky PTG run by PaRSEC; 45% improvement
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Generalized eigenvalue problem
Find pairs of eigenvalues λ and eigenvectors x s.t.

Ax = λBx
A B

1.

2.

H T

3.
S T

1 QR factorization
2 Hessenberg-Triangular reduction
3 QZ algorithm (generalized Schur decomposition)
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Motivating (terrifying) example

Tunable parameters in
state-of-the-art parallel QZ algorithm:
nmin1 Algorithm selection threshold.
nmin2 Algorithm selection threshold.
nmin3 Parallelization threshold.
PAED Number of processors for subproblems.
MMULT Level-3 BLAS threshold.
NCB Cache-blocking block size.
NIBBLE Loop break threshold.
nAED Deflation window size.
nshift Number of shifts per iteration.
NUMWIN Number of windows.
WINEIG Eigenvalues per window.
WINSIZE Window size.
WNEICR Number of eigenvalues moved together.
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WP5: Challenging applications—a selection

Dense solvers/eigensolvers in materials science and chemistry
▸ Thomas Schulthess, ETH Zurich, Switzerland
▸ Ax = λBx , A Hermitian dense, B Hermitian positive definite

Load flow based calculations in large-scale power systems
▸ Bernd Klöss, DIgSILENT GmbH, Germany
▸ Extreme scale, highly sparse, unsymmetrical and very

ill-conditioned Ax = b

Energy solutions and Code Saturne
▸ Yvan Fournier, EDF, France
▸ Communication-avoiding methods for sparse linear systems

Data analysis in astrophysics and the Midapack library
▸ Radoslaw Stompor, University Paris 7, France; Carlo Baccigalupi,

SISSA Italy
▸ Communication-avoiding methods adapted to generalized

least-squares problem



NLAFET Summary
Deliver a new generation of computational tools and software for
problems in numerical linear algebra with a focus on
extreme-scale systems
Linear algebra is both fundamental and ubiquitous in
computational science and its vast application areas
Co-design effort for designing, prototyping, and deploying new
NLA software libraries:

▸ Exploration of new algorithms
▸ Investigation of advanced scheduling strategies
▸ Investigation of advanced auto-tuning strategies
▸ Open source

Stakeholder collaborations (users, academia, HW and SW
vendors)


