EPIGRAM

Exascale ProGRAmming Models

Towards Exascale Programming Models
HPC Summit, Prague
Erwin Laure, KTH

—xascale Programming Models

* With the evolution of HPC architecture towards exascale,

new approaches for programming these machines need
to be found - EPIGRAM focuses on exploring

programming models for the exascale era.

Intense discussion whether existing models can be

improved to exascale or whether disruptive changes are
needed.

Plan A

« Devise a new programming model
deally high level to increase productivity
ncluding autotuning and adaptivity

Deals efficiently with heterogeneous hardware
« Combination of compiler/runtime system

* These are important research questions one
should (and people actually do) work on

— But will take a long time before usable in real

applications
EPiGRAM

Plan B

» Work on improving existing, widely used
models
— MPI
— OpenMP
— Recently PGAS has also gained momentum
— Cuda/OpenCL/OpenACC

EPIGRAM Focus

« MPIl and PGAS

— Proven petascale technologies
— MPI still most widely used

» Challenges

— Reduction of memory consumption in
communication

—fficient collective operations
Reduced need for synchronization
nteroperability

Key Objectives ot the Project

Address the scalability (performance and memory
consumption) problem for MP and PGAS models.

Propose GASPI/GPI as the European PGAS

approach to exascale.

Design a hybrid MP-PGAS programming model
that combines the best features of the two
approaches.

Contribute to standardization efforts

Prepare two applications to exascale by
redesigning and implementing their

communications kernels. EPiGRAM

Key Players and Their Main Focus

KTH: management (WP1),
applications (WP6)

TUW: exascale MP (WP2)

FRAUNHOFER: exascale PGAS
(WP3)

CRAY UK: programming models for
diverse memory spaces (WP3)

EPCC: PGAS-based MPI (WP4)

External Contributor: UNIVERSITY
OF ILLINQIS: exascale MP (WP2
: EPIGRAM

Main Achievements

Improvements of collectives and memory
consumption in MP|

Scalable GPI-2
Interoperability of MPl and GASPI/GPI

— PGAS-based MPI
— Prototype of MPI-Endpoints

Application validation

—xascale Message Passing

Dealing with limited and slower memory:
— in-depth analysis of MPI derived datatype mechanism for saving copy-operations;

— Space efficient representation of derived datatypes

— analysis of MPI collective interface specification with suggestions for
improvement

Collective communication at scale:
— proposal for specification of homogeneous stencils, towards improved
(homogeneous, regular) sparse collectives

A streaming model for MPI

Other issues to be addressed:
— collective communication in sparse networks

— Multi-threaded MPI
— MPI with other models (threads, PGAS, extended message-passing models)

Neighborhood Collectives

Sparse neighborhood: list
of offsets for target
processes

Isomorphic: all processes
give same list

Useful for stencil
computations, much more
general than possible with
Cartesian MPI topologies,
and much more lightweight
and dynamic than with MP!
graph topologies

New, lightweight sparse collective operation for MPI

* MPI processes in regular torus

« Each MPI process communicates with small number of neighbors
* Collective communication: exchange with all neighbors, reduce
over all neighbors, ...

* All processes have the same kind of neighborhood

Light-weight set-up function:
Iso_create_neighborhood(int s, int relative_offsets[],...,comm);

Advantage:
More leverage for easily pre-computing efficient communication
schedules

Collective operations:

* |so_alltoallw(sendbuf, ... recvbuf,...,comm);

* Iso_allgather(sendbuf,...,recvbuf,...,comm);
 Iso_Reduce_scatter(sendbuf,...,recvbuf,...,comm):

A Streaming Approach tor MPI

* MPI processes are data

producers or consumers
8 Producers 2 Consumers

P1| | P2

P3| | P4 ~‘~~$.
Operate
P5| [P6 i

P7| | P8

Data producers carry
out HPC applications
and stream out data (in
unit of Stream Element)
to consumers

HPC
Application

Data consumer process
each stream element
according to the
Operation attached to
the stream on first-

come-first-served basis FPiGRAM

Exascale PGAS

Increase scalability of collective operations
and synchronization in GASPI/GPI

mprove exploitation of diverse and
nierarchical memory spaces in PGAS

mproved interoperability

Standardization contributions in the GASPI
Forum

i Single shot scalability: SEAM - TTI - 15Hz
C a a I I (2nd-8th order operator)
128 — . , . . .

Nodes:
1: 64 I Intel(R) Xeon(R) E5-2697 v3 (Haswell Lot W
Scalability tests on SuperMUC 28 cores cach Slaswel)
] .-
§ 16 } .
* Seismic imaging basedon & o
. . . 2
Reverse time migration, g a4 L
strong scaling 2f A
1w

ECED Scaling Plot on SuperMUC phase2 from the Extreme Scale-out Phz . a a A A 2 2
16 32 64 128 256 512 1024 2048

Number of nodes
. | * De-noising seismic images
o using the ECED filter
=l // O * About 0.4 PFs bound by

// memory bandwidth
/ | E— - EPiGRAM

1 1
14k 28k 42k 56k 70k «Pﬂ(
number of cores

ECED on 2028GB image X |
ideal scaling

512 |

TFlop/s

PGAS-based MPI

* Development of EMPI4Re as research
vehicle

— Based on T3DMPI

— Investigate different design choices
* Eg. memory consumption vs. performance

— Pilot implementation of MPI-Endpoints

MPI Endpoints - a Way Forward for MPI+X

Conventional Communicator

/ Process \ / Process \

o)| [Con

)TK N\ XX

\

= MPI provides a 1-to-1 mapping of ranks to processes

= This was good in the past, but usage models have evolved
— Programmers use many-to-one mapping of threads to processes
e E.g. Hybrid parallel programming with OpenMP/threads

— Other programming models also use many-to-one mapping
e Interoperability is a key objective, e.g. with Charm++, etc...

Endpoints: Flexible Mapping of Ranks to Processes

Endpoints Communicator

/ Process \

o]

/ Process \

| Rank Il Rank I

1
-~ Sa

Process \

Rank]

ONO

o J

Provide a many-to-one mapping of ranks to processes
— Allows threads to act as first-class participants in MPI operations

— Improve programmability of MPI + node-level and MPI + system-level models

— Potential for improving performance of hybrid MPI + X
A rank represents a communication “endpoint”

— Set of resources that supports the independent execution of MPI communications
Note: Figure demonstrates many usages, some may impact performance

intel'

EPIGRAM MPI Endpoints
Contributions

» Significant contributions to MPI Forum

— Effects on group manipulation functions
discovered and addressed

— Communicator query function modified to
identify endpoints communicator

« Paper regarding new context id allocation

— Current algorithms in MPICH and OpenMPI
will not work with multiple local endpoints

— Fixes identified and implemented in McMPI

Two EPIGRAM Pilot Applications

e PIC3D:

— Particle-in-Cell
Application for space
weather prediction

* Nek5000:

— Spectral code for
incompressible CFD

— NekBone (mini-app)

* |[FS (NEW)

— Weather forecast,
ECMWF

iIPIC3D - non-blocking P2P and derived data types

 iPIC3D code is now fully
using non-blocking
point-to-point
communication.
MPI derived data types
are used to avoid user-
defined buffers for halo
exchange and to
decrease memory
usage by the iPIC3D

application.

iIPIC3D - non-blocking collective I/O

Used non-blocking collective 1/0.
This allows us to overlap I/O with other work.

Redesigned iPIC3D workflow to overlap
/O and computation.

Using non-blocking collective I/O leads to
decreased execution time

— E.g. we decrease the execution time of the typical
production simulation on 2,048 cores by 6%

Now scaling at half million cores!
(before EPIGRAM only at 8K)

iPIC3D Weak Scaling Test on Blue Gene/Q

§6%TsaG% BA0% 840% @2@% 829% 821% g0

I I I I I I I I I I I I h

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288
of Cores

Scaling tests on VESTA BG/Q at ANL

X
>
o
c
2
‘S
E
w
(<))
2
B
o
[}
o

IPIC3D — Streaming Communication

We deployed the
MPIStream library,
developed in WP2, in
the iPIC3D

MPI MPI MPI

- St ith
process process RICEESS e MPI MPI

attached Parallel IO

operation process process

MPI MPI MPI
process process process MPI MPI

process process

(Ol Pyresed oy
sassadoud) suswnsuo e1eq

MPI MPI MPI
process process process MPI MPI

process process

MPI MPI MPI
process process process

application :

process process process

(eaep apnued Sulwesais 9pod QED|d! DUEISU JO)) SIDNPO.] IR

—1/0

- COmmUﬂlcathﬂ Of Weak Scaling Test in iPIC3D
particles m g1

N
o
o
S)

— Monitor load .
i m | n . . 4% . 5%8 3{.5 3_’1.1 351.6
balance . i

4(120) 8 (240) 16 (480) 32 (960)
#Node(processes)

Simulation time(s)

[V
o
o

MPI/GPl+ OpenMP Communication in Nek5000

* Implemented new
communication T o B e
kernel in blocking/ 5 |== eraopens

non-blocking MPI,

GPl + OpenMP

* Work presented at
WRAP workshop @
CLUSTERZO1 5 ‘ 512 102;&;248 4096 8192

Summary

Exascale technologies pose new challenges on efficient
programming
— Hybrid forms of parallelism, deep and limited memory hierarchies,
dynamic behavior, fault tolerance, etc.

— Not only relevant for exascale systems but for all systems

Evolutionary path that builds on existing, widely used components is
likely more promising than designing a new programming model

MPI and PGAS are good starting points for such an evolutionary
path

— Interoperability is a key issue!

— Higher abstractions can (should) be built on top

