
Towards Exascale Programming Models
HPC Summit, Prague

Erwin Laure, KTH

1

Exascale Programming Models

•  With the evolution of HPC architecture towards exascale,

new approaches for programming these machines need
to be found - EPiGRAM focuses on exploring
programming models for the exascale era.

•  Intense discussion whether existing models can be
improved to exascale or whether disruptive changes are
needed.

2

Plan A

•  Devise a new programming model

–  Ideally high level to increase productivity

–  Including autotuning and adaptivity

– Deals efficiently with heterogeneous hardware

•  Combination of compiler/runtime system

•  These are important research questions one
should (and people actually do) work on

– But will take a long time before usable in real

applications

3

Plan B

•  Work on improving existing, widely used
models

– MPI

– OpenMP

– Recently PGAS has also gained momentum

– Cuda/OpenCL/OpenACC

4

EPiGRAM Focus

•  MPI and PGAS

– Proven petascale technologies

– MPI still most widely used

•  Challenges

– Reduction of memory consumption in

communication

– Efficient collective operations

– Reduced need for synchronization

–  Interoperability

5

Key Objectives of the Project

•  Address the scalability (performance and memory
consumption) problem for MP and PGAS models.

•  Propose GASPI/GPI as the European PGAS
approach to exascale.

•  Design a hybrid MP-PGAS programming model
that combines the best features of the two
approaches.

•  Contribute to standardization efforts

•  Prepare two applications to exascale by
redesigning and implementing their
communications kernels.

6

Key Players and Their Main Focus

•  KTH: management (WP1),

applications (WP6)

•  TUW: exascale MP (WP2)

•  FRAUNHOFER: exascale PGAS

(WP3)

•  CRAY UK: programming models for

diverse memory spaces (WP3)

•  EPCC: PGAS-based MPI (WP4)

•  External Contributor: UNIVERSITY
OF ILLINOIS: exascale MP (WP2)

7

Main Achievements

•  Improvements of collectives and memory
consumption in MPI

•  Scalable GPI-2

•  Interoperability of MPI and GASPI/GPI

– PGAS-based MPI

– Prototype of MPI-Endpoints

•  Application validation

8

Exascale Message Passing

1.  Dealing with limited and slower memory:

–  in-depth analysis of MPI derived datatype mechanism for saving copy-operations;

–  Space efficient representation of derived datatypes

–  analysis of MPI collective interface specification with suggestions for
improvement

2.  Collective communication at scale:

–  proposal for specification of homogeneous stencils, towards improved

(homogeneous, regular) sparse collectives

3.  A streaming model for MPI

4.  Other issues to be addressed:

–  collective communication in sparse networks

–  Multi-threaded MPI

–  MPI with other models (threads, PGAS, extended message-passing models)

9

Sparse neighborhood: list
of offsets for target
processes

Isomorphic: all processes
give same list

Useful for stencil
computations, much more
general than possible with
Cartesian MPI topologies,
and much more lightweight
and dynamic than with MPI
graph topologies

Offset: (0,1)

Offset: (1,1)
Offset: (1,0)

Offset: (-2,1)

i

Neighborhood Collectives

10

•  MPI processes in regular torus

•  Each MPI process communicates with small number of neighbors

•  Collective communication: exchange with all neighbors, reduce
over all neighbors, …

•  All processes have the same kind of neighborhood

New, lightweight sparse collective operation for MPI

Light-weight set-up function:

Iso_create_neighborhood(int s, int relative_offsets[],…,comm);

Advantage:

More leverage for easily pre-computing efficient communication
schedules

Collective operations:

•  Iso_alltoallw(sendbuf,…,recvbuf,…,comm);

•  Iso_allgather(sendbuf,…,recvbuf,…,comm);

•  Iso_Reduce_scatter(sendbuf,…,recvbuf,…,comm);

11

A Streaming Approach for MPI

•  MPI processes are data

producers or consumers

•  Data producers carry

out HPC applications
and stream out data (in
unit of Stream Element)
to consumers

•  Data consumer process
each stream element
according to the
Operation attached to
the stream on first-
come-first-served basis

P1

P3

P5

P7

P2

P4

P6

P8

C1

C2

8 Producers 2 Consumers

R
esult

Operate

H
PC

A

pp
lic

at
io

n

Exascale PGAS

•  Increase scalability of collective operations
and synchronization in GASPI/GPI

•  Improve exploitation of diverse and
hierarchical memory spaces in PGAS

•  Improved interoperability

•  Standardization contributions in the GASPI

Forum

13

GPI Scalability

Scalability tests on SuperMUC

•  Seismic imaging based on

Reverse time migration,
strong scaling

14

•  De-noising seismic images
using the ECED filter
•  About 0.4 PFs bound by

memory bandwidth

PGAS-based MPI

•  Development of EMPI4Re as research
vehicle

– Based on T3DMPI

–  Investigate different design choices

•  Eg. memory consumption vs. performance

– Pilot implementation of MPI-Endpoints

15

MPI Endpoints – a Way Forward for MPI+X

§  MPI	provides	a	1-to-1	mapping	of	ranks	to	processes	
§  This	was	good	in	the	past,	but	usage	models	have	evolved	

–  Programmers	use	many-to-one	mapping	of	threads	to	processes	
•  E.g.	Hybrid	parallel	programming	with	OpenMP/threads	

–  Other	programming	models	also	use	many-to-one	mapping	
•  Interoperability	is	a	key	objecGve,	e.g.	with	Charm++,	etc…	

16	

Rank	

T	 T	 T	

ConvenGonal	Communicator	

Process	

Rank	

T	 T	

Process	

…	

Euro-MPI	2013;	Courtesy	Jim	Dinan		

Endpoints: Flexible Mapping of Ranks to Processes

§  Provide	a	many-to-one	mapping	of	ranks	to	processes	
–  Allows	threads	to	act	as	first-class	parGcipants	in	MPI	operaGons	
–  Improve	programmability	of	MPI	+	node-level	and	MPI	+	system-level	models	
–  PotenGal	for	improving	performance	of	hybrid	MPI	+	X	

§  A	rank	represents	a	communicaGon	“endpoint”	
–  Set	of	resources	that	supports	the	independent	execuGon	of	MPI	communicaGons	

§  Note:	Figure	demonstrates	many	usages,	some	may	impact	performance	

17	

Rank	

T	 T	 T	

Endpoints	Communicator	

Process	

Rank	

T	 T	

Process	

…	Rank	Rank	 Rank	 Rank	

T	 T	

Process	

Euro-MPI	2013;	Courtesy	Jim	Dinan		

EPiGRAM MPI Endpoints
Contributions

•  Significant contributions to MPI Forum

– Effects on group manipulation functions

discovered and addressed

– Communicator query function modified to

identify endpoints communicator

•  Paper regarding new context id allocation

– Current algorithms in MPICH and OpenMPI

will not work with multiple local endpoints

– Fixes identified and implemented in McMPI

18 of 12

Two EPiGRAM Pilot Applications

•  iPIC3D:

– Particle-in-Cell

Application for space
weather prediction

•  Nek5000:

– Spectral code for

incompressible CFD

– NekBone (mini-app)

•  IFS (NEW)

–  Weather forecast,

ECMWF

19

iPIC3D - non-blocking P2P and derived data types

•  iPIC3D code is now fully
using non-blocking
point-to-point
communication.

•  MPI derived data types
are used to avoid user-
defined buffers for halo
exchange and to
decrease memory
usage by the iPIC3D
application.

20

iPIC3D - non-blocking collective I/O

•  Used non-blocking collective I/O.

•  This allows us to overlap I/O with other work.

•  Redesigned iPIC3D workflow to overlap

I/O and computation.

•  Using non-blocking collective I/O leads to

decreased execution time

– E.g. we decrease the execution time of the typical

production simulation on 2,048 cores by 6%

21

Now scaling at half million cores!
(before EPiGRAM only at 8K)

22

Scaling tests on VESTA BG/Q at ANL

iPIC3D – Streaming Communication

We deployed the
MPIStream library,
developed in WP2, in
the iPIC3D
application :

–  I/O

– Communication of

particles

– Monitor load

imbalance

MPI/GPI+ OpenMP Communication in Nek5000

•  Implemented new
communication
kernel in blocking/
non-blocking MPI,
GPI + OpenMP

•  Work presented at
WRAP workshop @
CLUSTER2015

24

Summary

•  Exascale technologies pose new challenges on efficient

programming

–  Hybrid forms of parallelism, deep and limited memory hierarchies,

dynamic behavior, fault tolerance, etc.

–  Not only relevant for exascale systems but for all systems

•  Evolutionary path that builds on existing, widely used components is
likely more promising than designing a new programming model

•  MPI and PGAS are good starting points for such an evolutionary
path

–  Interoperability is a key issue!

–  Higher abstractions can (should) be built on top

