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Background

Dominating HPC languages are
— tailored for specific architecture designs
— largely static (e.g. fixed number of threads)

Most languages promote flat parallelism like parallel loops, which
imposes the need for global synchronization

Accelerator languages and MPI:
— Low-level style of programming — much effort left to the developer

Hybrid parallel programs may suffer from
— hard-coded problem decompositions schemas
— lack of coordination among runtime systems



AllScale Vision g

Single Source to Any Scale

— Write each algorithm only once
* using a single model of parallelism
* AllScale tool chain ports it to various architectures

— scale up and down for any scale of parallel system

AllScale tool chain

— integrated dynamic load balancing and auto tuning
e execution time, energy consumption, and power dissipation

— hardware management (e.g. frequency scaling)
— automated fault detection and recovery
— monitoring and profiling tools

Enable programmers to be productive on any-scale of system
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Recursively Nested Parallelism

* Requirements for Exascale:
— High degree of parallelism on multiple it e\ 3
levels (node, socket, core, vector, pipeline) =~ W

— Localized data access and communication -7

e Solution: Recursively Nested Parallelism

— a hierarchical workload decomposition for a
hierarchical hardware infrastructure

— results in (mostly) locally synchronized parallelism
— enables fine-grained resilience



Conventional Flat Parallelism

73

All

How to map flat parallelism to a hierarchical parallel architecture?

Complex handling of errors — global operations
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Recursively Nested Parallelism
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Recursively Nested Parallelism .00
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Maps naturally to multiple levels of HW parallelism
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Recursively Nested Parallelism”
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Multiversioning allows adaption to hardware & system state

A B @ . CodeVersions
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Recursively Nested Parallelism
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Dynamic load
balancing and
data migration
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Recursively Nested Parallelism .0
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Architecture

Applications [KTH,IBM,Numeca]
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Small- to Extreme-Scale
Parallel Architectures I

Tuning & Deployment

Pilot Applications

Single Source
User Interface

Generic APIs for
abstract Algorithm
Descriptions

Code Generation for
Accelerators and
Distributed Memory

Universal Abstract
Machine Model

Dynamic Load, Data
and Resource
Management

Parallel
Hardware

Identify & Express

Decomposition &

Computation & Data

Parallelism

Restructuring

Management
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AllScale API

A L Hardware-Oblivious
Application Applications o
Groups LS
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Abstract Domain
User-Level API " -
Specific Primitives
\ 4
Compiler Supported
Core AP prier supp
Primitives
Toolchain Toolchain Realization of
Provider Primitives
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API

* Based on C++ templates
— Widely used industry standard

e Objectives:

— Standard C++ tool chains can be used to
exploit shared memory parallelism of AllScale
generated code.

— Division of responsibilities among:
 Domain, HPC, and System Level Expert
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Core AP

* Main Primitive: rec
rec ( base_test, base, step )

 Semantically equivalent to a parallel version of:

auto fun( data ) {
// check for the base case

if ( base_test(data) ) return base(data);
// compute the step case
return step(data, fun);



rec(

Example fib()

1(int x) {return x < 2; },
1(int x) { return x; },

](int x, const auto& f) {

return f(x-1) + f(x-2);

All
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Base Case Condition

Base Case

> Step Case

Input Data
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User-Level API

Based on C++ templates
— Widely used industry standard

High-level Abstractions

— N-body, Stencil, Branch-and-Bound, Linear Algebra,
Monte Carlo, Dynamic Programming, ...

— Recursive data structures and algorithms developed
by parallelism experts for domain experts.

Familiar Primitives
— Pfor, Map-reduce, Async, Containers, ...

— Provided to enable upgrade path for legacy
applications

Standard C++ tool chains can be used to exploit shared
memory parallelism of AllScale generated code.
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Analyzes rec primitive usage and data accesses
Generates multiple code versions for each step

— Sequential P

— Shared memory parallel N I
— Distributed memory parallel &% /NN T, 0% 7

— Accelerator NN
Reports potential issues to programmer

— Data dependencies, race conditions, ...
Provides additional information to runtime

— E.g. type of recursion and data dependencies
— Improves dynamic optimization potential
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Runtime System

* Provides an abstract parallel machine as target
for compiler-generated code
* Manages distributed resources

— Data locality
— Communication & synchronization

— Accelerators
— Dynamic load balancing
e Selects from compiler-generated code versions

— Depending on hardware and execution context
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Multi-Objective Optimization ’

 Runtime Scheduler decides:
— where to place data
— where to run which version of tasks
— how to configure hardware (e.g. frequency)

e Can be utilized to steer execution towards
— low execution time B
— low energy consumption
— capped power dissipation

or a tradeoff
of those




D

Scalable Resilience & i
Online Performance AnalySiS © www.allscale.eu

* Scalable online performance analysis

— instruments, measures, and analyses time, events, energy,
power, and faults

— integrated with runtime system as basis of dynamic
optimization decisions

— integrated with compiler in order to provide profiling data to
developers

— closing the feedback loop

* Scalable resilience support
— directives and/or compiler analysis to guide fault tolerance
— monitors distributed execution
— support localized, fine-grained restarting on failures

Q, Prof. Dimitrios Nikolopoulos Prof. Erwin Laure &
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AllScale pilot applications ’

AMDADOS (IBM Ireland)

— Adaptive Meshing and Data Assimilation for the Deep water Horizon Oil
Spill

iPIC3D (KTH, Sweden)

— Implicit Particle-in-Cell code for Space Weather Applications
Fine/Open (Numeca, Belgium)

— Large Industrial unsteady CFD simulations

Objective is to understand the achieved gain in their performance
improvements.

— How => Data Management?

Concerns the data and statistics about the result from the project
activities (WP5 and WP6):

— monitoring data (WP5)
— output data generated by the pilot applications (WP6)
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AllScale Offer to HPC Ecosystem

* Programming environment for a range of
parallel computers including HPC and extreme

scale supercomputing.

— Compiler, runtime system, online performance
analysis, resilience management

— Programming API
e Tutorials and training for our environment.

* Open source HPC applications
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AllScale Intl. Cooperat'ionsAII

Joint development of AllScale runtime system
pased on HPX — Stellar Group — Lousiana State
Jniversity




Relations with cPPP, SRA and FETHE@/
CoE projects, PRACE

* Plans for cooperation with CoE POP
— Performance analysis and optimization

e Access to Prace infrastructure
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Role for EsD 2018-2020

 Compare AllScale APl against other APIs

— Productivity
— Performance and scalability
— Energy/runtime trade-off

* Combine all Auto-tune projects to a single EsD

e Tests to be done on variety of HPC hardware
with different benchmarks and applications



AllScale Summary R

Single high level API close to the user problem
— based on existing language and familiar C++ tool chain
— in contrast to low level and mixed programming paradigms
Aggressively exploits flexible and scalable parallelism
— nested recursive parallelism
— supports small scale to extreme scale parallel architectures
— in contrast to conventional, flat parallelism
Holistic compiler and runtime system
— no information hiding/encapsulation between different SW layers
— maintains maximum information across SW stack
Resilience and online performance analysis across all SW layers
Multi-objective optimization for runtime, resilience, power, and energy
— based on sound theory: pareto front
— in contrast to ad-hoc approaches
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