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•  Domina5ng	HPC	languages	are		

–  tailored	for	specific	architecture	designs	
–  largely	sta5c	(e.g.	fixed	number	of	threads)	

•  Most	languages	promote	flat	parallelism	like	parallel	loops,	which	
imposes	the	need	for	global	synchroniza5on	

•  Accelerator	languages	and	MPI:		
–  Low-level	style	of	programming	–	much	effort	leJ	to	the	developer	

•  Hybrid	parallel	programs	may	suffer	from	
–  hard-coded	problem	decomposiVons	schemas	
–  lack	of	coordinaVon	among	runVme	systems	
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•  Single	Source	to	Any	Scale	

–  Write	each	algorithm	only	once	
•  using	a	single	model	of	parallelism	
•  AllScale	tool	chain	ports	it	to	various	architectures	

–  scale	up	and	down	for	any	scale	of	parallel	system	

•  AllScale	tool	chain	
–  integrated	dynamic	load	balancing	and	auto	tuning	

•  execuVon	Vme,	energy	consumpVon,	and	power	dissipaVon	
–  hardware	management	(e.g.	frequency	scaling)	
–  automated	fault	detecVon	and	recovery	
–  monitoring	and	profiling	tools	

•  Enable	programmers	to	be	produc5ve	on	any-scale	of	system	
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•  Requirements	for	Exascale:	

– High	degree	of	parallelism	on	mulVple		
				levels	(node,	socket,	core,	vector,	pipeline)	
–  Localized	data	access	and	communicaVon	

•  SoluVon:	Recursively	Nested	Parallelism	
–  a	hierarchical	workload	decomposiVon	for	a	
hierarchical	hardware	infrastructure	

–  results	in	(mostly)	locally	synchronized	parallelism	
–  enables	fine-grained	resilience	



© www.allscale.eu	ConvenVonal	Flat	Parallelism	

…	global	barrier	

linear	parallel	grow
th	

How	to	map	flat	parallelism	to	a	hierarchical	parallel	architecture?	
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Socket	

Accelerator	

Node	

Recursively	Nested	Parallelism	

Maps	naturally	to	mul.ple	levels	of	HW	parallelism	
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Mul.versioning	allows	adap.on	to	hardware	&	system	state	

…	Code	Versions	
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…	Failed	computaVon	

Isolated	
restart	

Automa.c	resilience	management	
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Generic	Parallel	PrimiVves	
(C++	Template	API)	

[UIBK]	 Core	API	[UIBK]	

User-Level	API	[UIBK]	

Pilot	ApplicaVons	

Scheduler	[IBM]	
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AllScale	API	
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•  Based	on	C++	templates	
– Widely	used	industry	standard	

•  ObjecVves:	
– Standard	C++	tool	chains	can	be	used	to	
exploit	shared	memory	parallelism	of	AllScale	
generated	code.	

– Division	of	responsibiliVes	among:	
•  Domain,	HPC,	and	System	Level	Expert		
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•  Main	PrimiVve:	rec	

	 	rec	(	base_test,	base,	step	)	

•  SemanVcally	equivalent	to	a	parallel	version	of:	
	

		
	

auto	fun(	data	)	{	
//	check	for	the	base	case	
if	(	base_test(data)	)	return	base(data);	
//	compute	the	step	case	
return	step(data,	fun);	

}	
	



© www.allscale.eu	Example	fib()	

rec(	
	[](int	x)	{	return	x	<	2;	},	
	[](int	x)	{	return	x;	},	
	[](int	x,	const	auto&	f)	{		
	 	return	f(x-1)	+	f(x-2);		
	}		

)	;	

Base	Case	Condi.on	

Base	Case	

Step	Case	

	Input	Data	
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•  Based	on	C++	templates	

– Widely	used	industry	standard	
•  High-level	Abstrac5ons	

– N-body,	Stencil,	Branch-and-Bound,	Linear	Algebra,	
Monte	Carlo,	Dynamic	Programming,	…	

–  Recursive	data	structures	and	algorithms	developed	
by	parallelism	experts	for	domain	experts.	

•  Familiar	Primi5ves	
–  Pfor,	Map-reduce,	Async,	Containers,	…	
–  Provided	to	enable	upgrade	path	for	legacy	
applicaVons	

•  Standard	C++	tool	chains	can	be	used	to	exploit	shared	
memory	parallelism	of	AllScale	generated	code.	



© www.allscale.eu	Compiler	
•  Analyzes	rec	primiVve	usage	and	data	accesses	
•  Generates	mul5ple	code	versions	for	each	step	

–  SequenVal	
–  Shared	memory	parallel	
–  Distributed	memory	parallel	
–  Accelerator	

•  Reports	potenVal	issues	to	programmer	
–  Data	dependencies,	race	condiVons,	…	

•  Provides	addi5onal	informa5on	to	run5me	
–  E.g.	type	of	recursion	and	data	dependencies	
–  Improves	dynamic	opVmizaVon	potenVal	
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•  Provides	an	abstract	parallel	machine	as	target	
for	compiler-generated	code	

•  Manages	distributed	resources	
– Data	locality	
–  CommunicaVon	&	synchronizaVon	
– Accelerators	
– Dynamic	load	balancing	

•  Selects	from	compiler-generated	code	versions	
– Depending	on	hardware	and	execuVon	context	

Ireland	Prof.	Dietmar	Fau	 Dr.	KonstanVnos	Katrinis	
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•  RunVme	Scheduler	decides:	
– where	to	place	data	
– where	to	run	which	version	of	tasks	
– how	to	configure	hardware	(e.g.	frequency)		

•  Can	be	uVlized	to	steer	execuVon	towards	
–  low	execu5on	5me	
–  low	energy	consump5on	
– capped	power	dissipa5on	

or	a	tradeoff		
of	those	
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Scalable	Resilience	&		

Online	Performance	Analysis	
•  Scalable	online	performance	analysis		

–  instruments,	measures,	and	analyses	Vme,	events,	energy,	
power,	and	faults	

–  integrated	with	runVme	system	as	basis	of	dynamic	
opVmizaVon	decisions	

–  integrated	with	compiler	in	order	to	provide	profiling	data	to	
developers	

–  closing	the	feedback	loop	

•  Scalable	resilience	support	
–  direcVves	and/or	compiler	analysis	to	guide	fault	tolerance	
–  monitors	distributed	execuVon	
–  support	localized,	fine-grained	restarVng	on	failures	

Prof.	Dimitrios	Nikolopoulos	 Prof.	Erwin	Laure	
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•  AMDADOS	(IBM	Ireland)	
–  AdapVve	Meshing	and	Data	AssimilaVon	for	the	Deep	water	Horizon	Oil	

Spill	
•  iPIC3D	(KTH,	Sweden)	

–  Implicit	ParVcle-in-Cell	code	for	Space	Weather	ApplicaVons	
•  Fine/Open	(Numeca,	Belgium)	

–  Large	Industrial	unsteady	CFD	simulaVons	

•  Objec5ve	is	to	understand	the	achieved	gain	in	their	performance	
improvements.	
–  How	=>	Data	Management?	

•  Concerns	the	data	and		sta5s5cs	about	the	result	from	the	project	
ac5vi5es	(WP5	and	WP6):	

–  	monitoring	data	(WP5)		
–  	output	data	generated	by	the	pilot	applicaVons		(WP6)	

	 21	

AllScale	pilot	applicaVons	



© www.allscale.eu	AllScale	Offer	to	HPC	Ecosystem	

•  Programming	environment	for	a	range	of	
parallel	computers	including	HPC	and	extreme	
scale	supercompuVng.	
– Compiler,	runVme	system,	online	performance	
analysis,	resilience	management	

– Programming	API	

•  Tutorials	and	training	for	our	environment.	
•  Open	source	HPC	applicaVons		
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•  Joint	development	of	AllScale	runVme	system	
based	on	HPX	–	Stellar	Group	–	Lousiana	State	
University	
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RelaVons	with	cPPP,	SRA	and	FETHPC/

CoE	projects,	PRACE	
•  Plans	for	cooperaVon	with	CoE	POP	

– Performance	analysis	and	opVmizaVon	

•  Access	to	Prace	infrastructure	
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•  Compare	AllScale	API	against	other	APIs	
– ProducVvity	
– Performance	and	scalability	
– Energy/runVme	trade-off	

•  Combine	all	Auto-tune	projects	to	a	single	EsD	
•  Tests	to	be	done	on	variety	of	HPC	hardware	
with	different	benchmarks	and	applicaVons	
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•  Single	high	level	API	close	to	the	user	problem		

–  based	on	exisVng	language	and	familiar	C++	tool	chain	
–  in	contrast	to	low	level	and	mixed	programming	paradigms	

•  Aggressively	exploits	flexible	and	scalable	parallelism	
–  nested	recursive	parallelism	
–  supports	small	scale	to	extreme	scale	parallel	architectures	
–  in	contrast	to	convenVonal,	flat	parallelism	

•  Holis5c	compiler	and	run5me	system	
–  no	informaVon	hiding/encapsulaVon	between	different	SW	layers	
–  maintains	maximum	informaVon	across	SW	stack	

•  Resilience	and	online	performance	analysis	across	all	SW	layers	
•  Mul5-objec5ve	op5miza5on	for	run5me,	resilience,	power,	and	energy	

–  based	on	sound	theory:	pareto	front	
–  in	contrast	to	ad-hoc	approaches		
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