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Executive Summary 

A number of new developments have changed the high performance computing (HPC) 
landscape over the last five years or even less.  
On the hardware side, the new computing architectures are increasingly relying on accelerators, 
while the more traditional CPUs represents only 25% of the processors available in the actual 
top supercomputers now. While this evolution allows for the necessary limitation of the energy 
consumption of the machines, corresponding adaptation of legacy codes, both in the scientific 
and industrial contexts, is one of the main challenges facing them. Another important 
architecture evolution should also be emphasized: HPC centers are less and less isolated but 
fully integrated inside a global cyber-infrastructure ensuring a digital continuum of the data, 
from the place where they are generated (large-scale instruments, Internet of Things, IoT) to 
the place where they are finally stored or archived after having been processed. 
On the methodological side, artificial intelligence (AI), or more precisely machine learning 
(ML) and deep learning (DL), is modifying the way scientific problems are now being attacked. 
On the one hand ML is contributing to more traditional HPC by offering methods for either 
performing more efficiently some parts of the calculations (parameterizations schemes, solver 
preconditioners …), or identifying features which would otherwise be very difficult to identify, 
or providing innovative methods to process the wealth of date produced by these calculations. 
On the other hand, this physics-based HPC production of important datasets contributes to ML 
efficiency, while physics-based HPC it is also able to constrain neural network approaches. 
This convergence between HPC and AI/ML is a further incentive for the actual development of 
the so-called converged infrastructures. 
Besides the longstanding need for more computing power, e.g. access to Exascale resources, 
the new game-changer is leading to some modification for the roadmaps in a number of 
application domains, and roadmaps have been consequently modified and updated to account 
for these new opportunities, especially as compared to the preceding exercise conducted under 
the earlier EXDCI project (see “EXDCI inputs to the PRACE Scientific Case” [1]). This is the 
case, among others, for weather and climate, for high-energy particle physics, astrophysics and 
plasma physics, for biosciences and neurosciences, from the molecular level up to the medicine 
level, for combustion, for material sciences, for social sciences, and for engineering and 
industrial applications. For each of this domains, new opportunities resulting from the new 
hybrid approaches are given and discussed. The development of urgent computing is also 
benefiting from converged HPC/AI approaches, and applications are now prepared for real-
time decision making. These concerns are, among others, natural hazards (earthquake, 
tsunamis, …), biological hazards (propagation of pandemic, …), industrial damages and 
accidents, and (cyber) terrorism. 
Co-design between vendors and application developers in Europe is taking place at a rather 
slow pace, at least as compared to what happens in other countries, e.g. Japan. 
Finally, a series of recommendations are proposed: 1) increase the support for the development 
and use of hybrid methods (modeling, resource infrastructures, initial and life-long training); 2) 
keep-on inserting HPC facilities in a global cyber-infrastructure; and 3) sustain and increase 
co-design with application developers, among others to facilitate the transition to converged 
hardware and software infrastructures. 
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1 Introduction 

In mid-2018, the former EXDCI(-1) (“European Extreme Data & Computing Initiative”) 
project [2] published, as its deliverable 3.2, a quite complete overview of high performance 
computing (HPC) roadmaps of both scientific and industrial applications entitled “EXDCI 
inputs to the PRACE Scientific Case” [1]. This document included two main parts, the first one 
dealing with an analysis of scientific challenges in various scientific disciplines and industrial 
applications, the second one concerned with a set of quite high-level recommendations. The 
coverage of scientific disciplines was quite extensive, including numerical weather forecasting 
and meteorology, climate, oceanography, solid earth sciences, nuclear physics and QCD 
(“Quantum ChromoDynamics”) plasma physics, fusion, astrophysics and cosmology, material 
sciences, data-driven bioscience, molecular simulation, and biomedical simulation. It should 
nevertheless be noted here that social sciences were not at all addressed. The range of industrial 
and engineering applications was also large: aeronautics and aerospace, automotive industry, 
oil and gas, power generation and nuclear plants, process engineering, and combustion. 

A set of three main global recommendations were proposed:  

• Convergence between in-situ/in-transit post-processing techniques and machine 
learning (ML)/deep learning (DL) methods;  

• Development of new services toward urgent computing and link with scientific 
instruments;  

• And development of new Centers of Excellence (CoE) in Europe (Engineering and 
industrial applications, (Open-source) software sustainability, high performance data 
analytics, HPDA). 

The purpose of the present deliverable is to update this earlier analysis. For this, some new 
trends, which extend or even partially challenge the analysis from 1.5 years ago, are mentioned 
in Chapter 2. The new topics of convergence of HPC/HPDA and artificial intelligence (AI) as 
well as the digital continuum, which were not discussed in the earlier version are summarized 
in Chapter 3. The application cases are updated in Chapter 4 and co-design is addressed in 
Chapter 5. 
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2 Recent changes in hardware and methods 

Before considering the evolution of scientific and industrial roadmaps, it is necessary to recap 
the two main changes, which influenced the HPC approach, either in the hardware domain or 
with the disruptive development of ML in a number of applications. 

2.1 Hardware evolution and trends 

It is now well known that the increase in computing power cannot come from an increase of the 
core frequency above a few GHz, as this would lead to an unaffordable energy consumption. 
In fact, this has been experienced since about 2006, clock frequencies are not increasing much 
(if at all not going down). The consequence is that speed ups require more parallelism at all 
level: there is indeed such a possibility to gain performance by reducing the transistors size to 
include on the same surface of silicium many computing cores and then by using multi-level 
parallelism, from the many-core processors to the many-sockets nodes and to many-nodes 
supercomputers. But the number of transistors in a dense integrated circuit, which has been 
doubling roughly every two years for a long time, needs now slightly longer than three years 
for doubling, while the physics of making transistors suggests reaching the limit is near. 
Electrical consumption, although significantly reduced, is still an issue. Let us recall that, 
approximatively 12 years ago, the 1 MW consumption has been reached for 100 TeraFlop/s 
computers, as can be seen in Figure 1 and Figure 2. 
 

 
Figure 1 Increase in computing power as a function of time of the ten most powerful supercomputers* 

 
 
*Data for November 2017 do not appear as, for this only date, the Japanese “Gyoukou” machine, then 
ranked #4 with 19.136 PetaFlop/s, had a reduced electrical consumption of 1.35 MW, due to its 
19,840,000 accelerators out of a total of 19,860,000 cores. Including it here would have led to an 
incorrect appreciation of the global trends. 
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Figure 2 Mean electrical consumption as a function of time of the ten most powerful supercomputers. 

Same remark as in Figure 1 concerning November 2017. 
 
 
A way to reduce the increase in electrical consumption is to use specialized computing cores, 
requiring less energy and then serving as accelerators to the more traditional cores. Such GPU 
accelerators are now used for an ever-growing number of applications, although they require to 
develop new software tools.  
Altogether, and for the most recent period, i.e. the last five years, the computing power of the 
mean of ten best-supercomputers-at-a-time has been multiplied by a factor close to five, from 
11 PetaFlop/s to slightly more than 50 PetaFlop/s, linked to an increase in the number of cores 
by a factor slightly less than three, from 800,000 to almost 2,200,000. During the same period, 
the number of accelerators, which started to be part of supercomputers around 2011, increased 
by a factor of almost five, and they now account for about 75% of the total number of cores 
(see Figure 3), allowing for an almost levelling of the electrical consumption.  
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Figure 3 Number of cores, including accelerators, as a function of time of the ten most powerful 

supercomputers. Same remark as in Figure 1 concerning November 2017. 
 
 
Straightforward extrapolation of these trends would call for computers with much more 
parallelism and customized hardware, but being significantly slower than earlier predicted from 
the so-called Moore’s law. The importance of power consumption, responsible for these trends, 
will remain in the forthcoming years as a crucial and unavoidable constraint. Future computers 
will have to provide 1 ExaFlop/s with 20 to, at most, 30 MW power consumption, therefore 
calling for a massive use of low-consumption processors. With present technologies this implies 
a very high proportion of accelerators, and improved interconnects and software.  
On the longer term, new technologies presently under development should provide alternative 
and more efficient ways to increase the computing power without increasing the energy 
consumption: die stacking and 3D chip, nonvolatile memory, photonics, resistive computing, 
neuromorphic computing, quantum computing, nanotubes, graphene, and diamond-based 
transistors. It is however too early to predict which technologies will mature first, and when. 
As a consequence, roadmaps for applications should take as an input the continuation of actual 
hardware technologies for the next few years. 

2.2 Machine learning 

ML, and especially DL, first appeared as domain more or less independent from model-based 
HPC, both for the software stack and type of computers being used. It has been however obvious 
for more than a couple of years now that ML/DL is indeed synergetic with HPC. Most of the 
applications are indeed able to benefit from the complementary approach, with strong influence 
on roadmaps in a number of application domains. Some applications are given in more detail 
in Chapter 4. 
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2.3 Revisiting applications and industrial roadmaps: an ever-continuing 
              exercise 

Both the trends in hardware and architectures over the next- or longer-term futures, and the 
modification of HPC paradigm due to the ever-growing importance of dealing with massive 
data and taking advantage of ML, make it necessary and timely to review the earlier roadmaps 
for a number of scientific applications and industrial and engineering usages. This exercise 
should however recognize and take advantage of a few recent analysis conducted by other 
organizations.  
In the field of applications, the new vision document by PRACE (“Partnership for Advanced 
Computing in Europe”) [3], “The scientific case for computing in Europe 2018-2026”, 
published in October 2018 [4], reviews the scientific and technical challenges and potential 
breakthroughs which are facing the various applications domains: climate, weather and earth 
sciences; life science and improvement of human health; energy; infrastructure and 
manufacturing for mankind; future materials, from molecules to machines. It also underlines 
the need for adapting the approaches to take care of complexity and massive data as well as of 
architectures of next-generation computers. It concludes with recommendations for 
infrastructures, both from the compute and storage points of view and from operations and 
environments. The BDEC (“Big Data and Extreme-scale Computing”) paper, “Big data and 
extreme-scale computing: Pathways to convergence-toward a shaping strategy for a future 
software and data ecosystem for scientific inquiry”, also published in 2018, is a thorough 
analysis of the scientific potential of hybriding the traditional HPC approach with HPDA and 
ML, as well as the constraints and difficulties on the road to converged approaches. It makes a 
number of recommendations for both decentralized edge and peripherical ecosystems on the 
one hand and centralized facilities on the other hand. 
For issues closer to hardware and architectures we have to consider three recent studies of 
importance. Firstly, the ETP4HPC (“European Technology Platform for High Performance 
Computing”) [5] “Strategic Research Agenda” (SRA) is continuously revised, its third version 
(SRA-3) has been published at the end of 2017 [6], and the fourth version (SRA-4) should be 
available in the end of 2020 [7]. SRA is aimed mostly at providing contextual guidance for 
research in hardware and software, for business and for EU. It concentrates on technological 
aspects and keeps an updated view of actual context and vision for the future. Exascale 
developments are central to its work. Secondly, the document “Long-Term Vision on High-
Performance Computing” [8] published by the European Commission (EC) coordination and 
support action (CSA) “Eurolab-4-HPC” in 2018 outlines a long-term vision for excellence in 
European HPC research, with a timescale beyond Exascale computers, i.e. a time span of 
approximately 2023-2030. In this document issues concerned with disruptive technologies are 
dealt with, as well as their consequences with respect to software and programming 
environments. Finally, EuroHPC strategy documents are in the process of being finalized and 
published. They should emphasize the new avenues for European HPC. 

2.4 How the present deliverable was prepared 

It has already been said that a number of recent prospective documents, offering complementary 
visions for hardware, software, methods, applications, … were available. If relevant for the 
present deliverable, visions and recommendations from these documents have been taken into 
account. Other sources of information have been considered as well. 
Firstly, most of the CoEs were contacted and, when available, the recommendations and 
conclusions taken from their prospective documents have been included. As some of these 
documents will be available only in 2022, when their actual contracts with the EC will end, it 
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was decided to discuss directly with the CoEs to learn about their roadmaps. For scientific 
domains which are not covered by CoEs it was decided to contact experts in such fields, to 
collect their vision documents and/or invite them to produce ad hoc considerations for 
contributing to the present deliverable. This was in particular the case for social sciences and 
astrophysics nuclear fusion.  
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3 Toward the convergence of HPC/HPDA and AI riding a new 
digital continuum 

In the following part of the document, one will use either AI or ML/DL, as AI is most commonly 
used in the literature at stake, but as it covers only ML/DL for almost all of the developments 
referred to below. 
As already said, the EXDCI project issued its last roadmap document on academia and 
industrial applications mid-2018, as such elements are not varying so much in 18 months the 
following elements are much more new elements or a gap analysis.  

3.1 Exascale: the convergence of HPC/HPDA and AI  

HPC, the use of supercomputers for accelerating numerical simulation, is a strategic tool for a 
competitive science, fostering innovation and supporting public decision making. In 
science, after having being used since more than 30 years in climate research, numerical 
weather prediction, astrophysics or chemistry, HPC is now irrigating all scientific fields from 
biology, life sciences and health, high fidelity combustion, materials sciences to social sciences 
and humanities. In industry, HPC is widely used in oil and gas exploration, aeronautics, 
automotive and finance, and becomes now crucial for ensuring personalized medicine, 
developing nanotechnologies or enabling developing renewable energies. Finally, HPC is 
becoming a tool of growing importance for supporting public decision making by allocating 
urgent computing resources in case of natural risk events (earthquakes, thunderstorms, 
flooding, …), industrial risks, biological risks or (cyber)terrorism risks. 
While Moore’s and Dennard’s laws and the shift from vector to scalar parallel processing 
allowed relatively smooth transitions every 10 to 12 years from Gigascale1 (1985), Terascale2 
(1997) and finally to Petascale3 (2008), the upcoming transition from Petascale to Exascale4 
(expected between 2019 and 2023) is going to raise many issues. 
The first one is related, as already indicated, to the limitation of the power consumption to an 
acceptable 20 to 30MW for 1 ExaFlop/s system leading to dense massively parallel hardware 
architectures including heterogeneous manycore compute nodes, and complex memory and 
storage hierarchies. Benefiting from these architectures will require profound changes/rewriting 
of HPC applications in order to adapt them to new (and standard) programming models 
(including domain specific language, DSL, and interpreted languages), extract more 
parallelism, use dynamically available computing/data resources, maximize data locality and 
reuse for avoiding data movement and thus save energy, deal with hardware and software 
resiliency, … As a consequence, instead of focusing like in the past on peak performance of 
HPC systems, HPC agencies and centers are now expecting future systems to improve 
drastically by 50x to 100x sustained performance on real applications, considering co-design 
between scientific communities, HPC vendors and HPC centers as the only way to develop 
simultaneously efficient HPC architectures and applications. 
The second issue is related to the convergence between HPC and big data workloads due to 
the deluge of data coming from next generation scientific instruments (satellites, (radio-) 
telescopes, accelerators, microscopes, sequencers, Internet of Things, IoT, …) and from large-
scale simulations (massive 3D simulations, multi-scale and multi-physics coupled simulations, 
ensemble/optimization studies, uncertainties quantification, …). Exploiting and valuing such 
                                                
1 one GigaFlop/s = 1 billion floating point operations per second 
2 one Tera/Flop/s = 1 thousand billion floating point operations per second 
3 one PetaFlop/s = 1 million billion floating point operations per second 
4 one ExaFlop/s = 1 billion billion floating point operations per second 



D3.1    Roadmap of HPC applications and usages 
 

EXDCI-2 - FETHPC-800957 9 26/02/2020 

amount of structured or unstructured data in a reasonable and competitive time is not anymore 
possible for human beings, leading to the rise of HPDA supported by new data 
assimilation/interpretation/extraction/prediction techniques benefiting from AI. As example, 
Figure 4 states the increase of final (refined) data generated by successive CMIP5 (2010-2012, 
fifth Coupled Model Intercomparison Project) and CMIP6 (2016-2018) climate exercises. For 
CMIP7 planned to be performed around 2022-2024, a 30x increase in the size of the data, 
resulting from higher resolutions and number of multi-physics ensembles, is expected by 
climate communities. 
 

 

Figure 4 Overview of CMIP5/6 data management (courtesy of CMIP) 
 
 
Another example shown in Figure 5 is coming from large-scale instruments where next 
generation projects like SKA (square kilometer array), a radio telescope project, are going to 
generate up to 500 TB/s of data at the level of the edge and up to 4 EB of refined data per year. 
 

 

Figure 5 SKA project overview (courtesy of SKA) 
 
 
By consequence, Exascale will be a new paradigm, not only technological but also 
organizational in the way to rethink data workflows from end to end, federate converged 
HPC/data infrastructures through high bandwidth network services, develop new skills 
in HPC, data management and AI and foster new insights from scientific and industrial 
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disciplines toward data discovery. As a consequence, we see since few years the rise of 
converged systems able to accommodate the needs of AI-augmented numerical simulation and 
the scale-out of AI models using HPC.   
In the US such systems like IBM Summit at Oak Ridge National Laboratory are providing a 
peak performance of 200 PetaFlop/s using more than 27,000 NVIDIA V100 GPUs across more 
than 4600 Power9 based compute nodes. Originally designed to accommodate the needs of 
traditional massive HPC workloads, Summit is now running HPC, AI workloads at scale, and 
real time analytics. The next generation of US Department of Energy (DoE) systems, providing 
Exacale class performance for 2021/22 will be converged systems (HPC+AI) deployed at 
Argonne National Laboratory (A21, Intel/Cray system of 1.3 ExaFlop/s peak end of 2021), Oak 
Ridge National Laboratory (Frontier Cray/AMD system of 1.5 ExaFlop/s peak end of 2021) 
and Lawrence Livermore National Laboratory (El Capitan Cray system of 1.5 ExaFlop/s peak, 
end of 2022).  
In Japan the Post-K computer (now known also as Fugaku) at RIKEN will also address starting 
2021 converged workloads with more than 150,000 high-performance CPUs, ARM based 
A64FX scalar processors developed by Fujitsu.  
In Europe, the three pre-Exascale systems ongoing purchased by the EuroHPC joint 
undertaking (JU) together with the three hosting entities (Barcelona Supercomputing Center for 
MareNostrum 5, CINECA for Leonardo, and CSC for the Large Unified Modern Infrastructure, 
LUMI, consortium) will be based on hybrid nodes (CPU+GPU) addressing potentially 
converged workloads. These systems with a performance >150 PetaFlop/s peak will be 
available for European researchers starting 2021.  
In France finally, following the announcement of the President mid-2018 about the French AI 
strategy (called “AI For Humanity”), Grand équipement national de calcul intensif (GENCI) 
have been asked to make available for French AI research community (academia and industry) 
leading edge HPC resources. This led beginning of 2019 to the installation of Jean Zay at IDRIS 
at Centre national de la recherche scientifique of an Hewlett Packard Enterprise converged 
system of 16 PetaFlop/s based on a mix of scalar (more than 60,000 Intel cores) and converged 
nodes (scalar nodes accelerated with 4 to 8 NVIDIA V100 32 GB GPU), a tiered fast storage 
infrastructure and a converged software stack including AI-native schedulers (Kubernettes), the 
support of secured containers technologies and Jupyter notebooks (see Figure 6).  
Beyond the traditional HPC world, it is also interesting to see that the world of hyperscalers 
(clouds providers) are also moving to converged architectures by integrating components 
from the HPC world in terms of integration (notion of dense pods), cooling (direct liquid 
cooling on Google’s latest tensor processing unit, TPU, see Figure 7), interconnects (adoption 
of low latency remote direct memory access, RDMA, over converged ethernet, RoCE, 
deployment of InfiniBand networks at Amazon Web Services) and tiered storage technologies 
(use of NVM express, NVMe, over fabrics, use of Lustre parallel file system, …). 
Beyond the convergence of hardware and middleware architectures, it is also interesting to see 
growing convergence of the usage between HPC and AI, with the moto HPC needs AI and AI 
needs HPC. 
 



D3.1    Roadmap of HPC applications and usages 
 

EXDCI-2 - FETHPC-800957 11 26/02/2020 

 
Figure 6 Picture of GENCI's Jean Zay converged system at IDRIS (courtesy of C. Frésillon) 

 
 

 

 
Figure 7 Picture of Google v3 TPU Pod and card with direct liquid cooling (courtesy of Google) 

            
       

 

3.1.1 Why HPC needs AI? 

The first reason is that since the 1990s, researchers use HPC/high throughput computing (HTC) 
to post-process the data coming from large scale instruments (satellites, telescopes, 
microscopes, network of sensors, sequencers, …) and the amount of data is now so huge that 
traditional HPDA techniques and humans in the loop are not enough to process and value 
data in a competitive time. The amount of data that will be generated by various sources will 
reach 175 ZB (175x1021 Bytes) by 2025, growing from 33 ZB in 2018 according to Hyperion 
(formerly International Data Corporation, IDC). AI techniques such as DL gained recently a lot 
of at attention in the field of medical imaging (breast cancer detection, detection of diabetic 
retinopathy, age-related macular degeneration, AMD, and glaucoma, …), large-scale 
instruments (for denoising and detecting gravitational wave [9], AI-guided post-processing of 
the next CERN’s large hadron collider (LHC) experiments, …) and natural risk prevention (for 
example using AI, such as recurrent neural networks, RNNs, for listening the earth background 
seismic noise in order to anticipate the rise of earthquakes). This implies, for example, to adapt 
HPC operations for accommodating to stream based access of data coming from instruments 
with traditional batch access in order to avoid when possible to store raw data and post-process 
it on the fly and the support of end to end workflows (see specific section later). 
The second reason is the rise of AI-augmented numerical simulation. Many experts are not 
considering that AI will replace numerical simulation but much more will accelerate it by 
coupling learnt models with existing simulation codes for multi-scale/multi-physics 
simulations, being able to interpolate/extrapolate missing information in molecular dynamics 
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(MD) simulations or as input for numerical models, accelerating the convergence of iterative 
methods by providing refined inputs, being integrated into optimization and uncertainties 
quantification studies or in the management of meshes (pre-processing, re-meshing, …).  
The third reason is related to the post-processing of data coming from massive simulations 
running on supercomputers. In order to save time and energy, it is preferable to take benefit of 
data locality for performing AI-guide in-situ or in-transit post-processing of the data and 
only store pertinent inferred data on disk. A lot of research is done in Europe, as an example 
the MELISSA (“Modular External Library for In-Situ Statistical Analysis”) framework [10] 
(see Figure 8) from Inria aims to propose standard and portable AI-guided in-situ post-
processing for massive ensemble statistical analysis with concrete results on energy 
applications with EDF (France). Such frameworks will also evolve in the future to AI-driven 
computational steering of the simulations, allowing numerical simulations to converge faster 
end thus optimize time and energy-to-solution. 
 

 
Figure 8 Inria’s MELISSA post-processing framework (courtesy of B. Raffin) 

 
 
Finally, and for sure not the least, the last reason is to use AI for better exploiting HPC systems 
and more globally computing centers. According to Hyperion, by 2020, the demands of next-
generation applications and new IT architectures will force 55% of enterprises to either update 
existing data centers or deploy new ones. As datacenters architectures are becoming more 
complex and denser, there is also a major stake in a context of limited human workforces in 
optimizing the global production of heterogenous workloads while reducing energy footprint. 
In that context the use of AI for assisting system administrators is growing from data center 
infrastructure management (cooling, power), IT environment (storage, networks, security) to 
HPC systems.  
As a major example for HPC systems, AI could be used for augmenting the capabilities of 
the resource scheduler for:  

• performing smart preventive self-healing of the components,  
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• identifying automatically the running applications and optimize their placement 
knowing their profile (in terms of communication patterns, input/output (I/O) operations 
and of course computing requirements associated to the datasets used allowing to adjust 
the frequency of the processors),  

• being able to application-based checkpoint/restart on the fly for having a more elastic 
production and thus accommodate to stream or urgent computing,  

• deferring the I/O traffic when congestion periods are occurring, …  
Based on the permanent information collected on running infrastructures, AI could foster the 
development of predictive on the fly maintenance avoiding costly and lengthily regular 
shutdown of HPC systems for major maintenances.  
Ultimately, based on this fine grain profiling of information, AI could be used for developing 
next generation of wizard tools able in a post mortem way to provide tailored feedback to 
system administrators as well as end user about how their applications behave and what is 
needed to improve them.  

3.1.2 Why AI needs HPC? 

First, HPC and numerical simulations are generating a lot of data which can be used for 
training AI models. This often includes data which is already labeled and thus suitable for 
massively supervised DL. HPC is also a very good tool for rapidly generating missing data in 
the field of active learning for improving the training of AI models.  
As an example, recent CMIP6 climate experiments performed in France generated around 
14 PB of structured and labeled data, this data-lake is closely integrated with the Jean Zay 
converged system at IDRIS and will become a natural playground for fostering the growing 
synergies between AI and numerical simulation communities. While scale and variety (in order 
to avoid bias) of data matter for an efficient training of the models, HPC systems could be very 
useful by design (large amount of compute and storage resources) for generating large 
synthetics datasets for training or testing AI models. 
The second reason, and the most important one, is related to the compute requirements of AI 
while training models especially deep neural networks. The high computational demand of 
fields like DL has contributed to emphasize the need of high performance hardware and 
software (e.g. general purpose computing on GPUs, GPGPUs), and therefore, put HPC 
technologies in the foreground. Figure 9 issued by OpenAI illustrates clearly this exponential 
growth of the compute usage for AI training since the inception of the first DL models 
(Perceptron). The availability of massive datasets (e.g. smart phone user data or social media 
usage) and the development of new AI models lead now during the so-called modern-area of 
AI to the doubling of the compute power needed every 3.4 months, exploding by far the well 
unowned micro-electronics Moore’s law. 
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Figure 9 Two distinct eras of compute usage in training AI systems (source [11])  

 
 

Beyond the raw access to HPC resources, the AI communities may benefit from the synergies 
with the HPC communities for optimizing (in terms of performance and energy efficiency) and 
scaling out the learning of AI models taking into account the multiple levels of parallelism of 
such process:  

• parallelization of hyper parameter search (network type and topology, learning rate, 
hidden units, convolution kernel width, …) as one of the most expensive tasks in the 
process of training; 

• parallelization of the different datasets across multiple batches; 
• domain-decomposition and parallelization of the forward/backward gradient 

computation;  
• intra chip ILP by using vectors, tensors (like NVIDIA tensorcores) for parallel local 

convolutions. 
As an example, a research team from the Jülich Supercomputing Centre (Germany) accelerated 
the training of RESNET-50 (see Figure 10) on up to 96 GPU of the JUWELS tier-0 system but 
using the Horovod parallel framework and optimizing the collective operations needed while 
exchanging computed gradients at each phase of the training (see Figure 11). Such optimization 
will allow a faster and more efficient scaling of the training process, the use of more 
complex/deep/dynamic networks. 
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Figure 10 ResNET-50 pipeline (courtesy of M. Riedel) 
 

 

 
Figure 11 Optimization of ResNET 50 done at JSC. ResNET is a leading convolutional neural network 

that is trained on more than a million images from the ImageNet database. The network is 50 layers deep 
and can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. 
Its computational complexity of training relies on the fact that it has around 25.6 millions of trainable 

parameters which make RESNET-50 very suitable for parallelization via distributed training on multiple 
GPUs (courtesy of M. Riedel). 

 

 
As another recent example, in 2018 a team from Inria, IRD, and the Institut national de la 
recherche agronomique (INRA) worked with Intel, SurfSARA, and GENCI on tier-1 and tier-
0 HPC systems to scale out a plant recognition AI model (PlantNet, Figure 12) on up to 400,000 
classes which was at this time a first ever. Previously, the mobile application was using only 
17,000 classes for the inference of the photos submitted by users (more than 100,000 users/day) 
so the challenge was to expand it to the biggest plant and flora available database with 390,000 
species around the world.  
The framework used was Caffe using an optimized version provided by Intel while using 
GENCI’s x86 facilities (Irene, the French tier-0 at Très Grand Centre de calcul, TGCC, at CEA 
and Occigen at the Centre Informatique National de l’Enseignement Supérieur, CINES). 
Multiples issues have been addressed including the memory scalability of the protobuf library 
and finally it has been possible to train a model with 390,000 classes in a few hours, which was 
clearly to reachable with current PlantNet HPC facilities. Figure 13 illustrate the good 
scalability on up to 1024 nodes (around 50,000 cores) even if tests have been conducted on up 
to 1320 nodes (63,000 cores). This example clearly emphasizes the impact of using HPC 
systems for the training of large-scale AI models.  
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Figure 12 The PlantNet system (courtesy of A. Joly) 

 

 
Figure 13 Scalability of the training of the 390,000 classes PlantNet model on x86 systems (courtesy of A. 

Joly) 
 
 

The use of HPC will also foster the development and the use of automatic tools like 
AutoML, AutoAI for auto-tuning of the models or the development of generative adversarial 
network (GAN) approaches like in high energy physics. Scientists from CERN are replacing 
Monte Carlo methods with GANs, an unsupervised learning technique where two neural 
networks compete to produce more accurate results, in order to accelerate their ability to study 
collision data from high-granularity calorimeters that measure particle energy. In this case, the 
AI code is able to produce similar results as the numerically intensive code, but uses only a 
fraction of the compute cycles, thereby enabling both bigger and faster models [12]. 
Finally, as the holy grail of the AI community, HPC could help in developing the next 
generation of AI called XAI (eXplainable AI) for providing more traceability, trust, and 
explicability on decisions taken by AI models, a major stake for the adoption and the trust on 
such tools by societies and be compliant with legal, regulatory and moral frameworks. Such 
approaches could be based on so-called hybrid AI connectionist and symbolic methods. 
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3.2 Towards a digital continuum from the edge to the tape  

The second disruption is coming from the fact that HPC centers are less and less isolated but 
fully integrated inside a global cyber-infrastructure ensuring a digital continuum of the 
data, from the place where its generated like large scale instruments (satellites, telescopes, 
microscopes, sequencers, network of sensors, …) and IoT to the place where the final (and 
refined or useful) data is stored (or archived). In Figure 14 and Figure 15, issued from EXDCI-
1 project/BDEC2, data is generated by instruments/devices at the edge, then pre-
processed/inferred locally thanks to a small amount of (energy efficient and low cost) 
computing power, allowing to reduce the burden of data to be sent across communication 
networks and in some case enforce security/privacy (local processing only or encryption of 
data) for sensible data.  
After this first stage of acquisition/processing at the edge level, data is now sent to a hierarchy 
of processing levels of (re)processing called fog computing thanks to upcoming 
5G/Sigfox/LoRa and traditional wide area networks (WANs), until it reaches more traditional, 
larger-scale HPC systems such as supercomputers or HPC-enabled clouds. After this final stage 
of processing, data is archived and made available to wide communities using open data and 
FAIR principles transforming previous computing centers into (computing+data) centers. In 
some cases, either this post-processed data or synthetic data generated by simulations run on 
supercomputers are jointly analyzed with real-time data monitored on edge systems, as part of 
a global process allowing for continuous refinement and self-improvement of simulation 
models (example of real time digital twins or real time steering of large-scale scientific 
instruments or oil & gas major seismic acquisitions). 
 

 
Figure 14 A new digital continuum: scheme (source BDEC2). 
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As stated inside the forth version of ETP4HPC’s SRA, ensuring such digital continuum across 
a well-connected heterogeneous cyber-infrastructure will need to address major challenges in:  

• ensuring a proper and secured data logistics with unified data storage abstractions 
and systems enabling efficient data sharing across the digital continuum with federated 
resources: data have to be exchanged from edge devices to HPC-class machines, 
therefore the data should be presented in a coherent and easy to use form for all 
machines in the “continuum”; 

• unified real-time data processing techniques favoring the joint use of HPC-originated 
approaches such as in-situ/in transit processing with stream-based processing 
techniques now common in big data analytics frameworks; 

• interoperability and standardization of the different software stacks from the edge 
to the HPC center either for HPC, HPDA, and AI workloads, in that goal secured 
containerization could be a solution; 

• (near to) real-time computation to generate near to real-time decisions: as most cyber 
physical systems will have to close the loop between sensing-computing-acting by 
reacting on the physical world, the time constraints of the physical world will drive the 
maximum execution time of the part sensing-computing-acting; 

• cohabitation of processing in stream mode together with classical batch access mode 
using smart resource schedulers: the real world generates data continuously, and due to 
the expected real-time reaction (see above), this implies continuous processing of 
streams of data and elastic allocation of resources; 

• enforced privacy and data security: As HPC systems will be open to “untrusted” data 
and accesses from outside, the requirements of security and ethics such as privacy 
should be enforced; 

• dynamic end to end application workflows management (allowing coupling of 
simulation, databases and data streams, data analytics and visualization that interact 
together in real time), in that sense increased interaction between the HPC, data 
analytics and AI communities is critical; 

• as these challenges will also have impact on the mindset of people operating these new 
generation of HPC systems education and training of new skills in data management 
and increased user support. 

Figure 15 A new digital continuum: table (source BDEC2). 
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Some examples can be given of the use of such continuum for a couple of applications. These 
new services are pilot implementation of new business model called “HPC as a service”, that 
will be analyzed as new way to access the futures European Exascale HPC facilities.  

3.2.1 AQMO: an edge-to-HPC digital continuum framework for air quality 

Air quality improvement is a major challenge for most metropolises. Proposing efficient 
policies to address this challenge requires solving two issues. The first one is to perform air 
quality measurement with a thorough temporal and spatial coverage. The second one is to 
understand the dispersion of the pollution as well as being able to analyze “what-if” scenario. 
The measurement issue is addressed using more sensors while the second one related to the use 
of HPC numerical simulations. Of course, the two issues are intimately entangled. The 
measurements provide the basis to elaborate the model inputs and validation while the 
numerical dispersion model gives insight in how the pollution reaches the citizens.  
The AQMO project provides an end-to-end urban platform that extends current practices 
in air quality measurements. Figure 16 shows an overview of the digital continuum design to 
implement the platform. This continuum integrates edge technology, cloud facilities and 
supercomputers. It is intended to provide citizens, local authorities, scientific organizations 
and private companies with new open-data and innovative services based on computing 
simulation (HPC and edge-computing/IoT).  
To implement air quality analysis in a cost-effective manner in a wide area, the local 
transportation bus network is embedding mobile sensors. In the case of measurements for 
catastrophic event, use of drones is explored. This strategy allows to use fewer but more 
accurate sensors. The edge computing part of the continuum aims at two main functions. The 
first one is the storage of the collected data in order to manage the intermittent communications 
issue. The second one is to respect citizen privacy. Indeed, the platform makes use of cameras 
to detect if a bus is stuck behind a truck or another vehicle (which tamper with the pollution 
measurement). An AI engine is implemented at the edge and only the image analysis is sent 
back, no images are stored. The resource continuum is logically assembled using a global 
workflow management technology and is design to support new sensors as well as complex 
numerical models in a routine usage in the context of a smart-city.  

 

 
 
 
 

Figure 16 AQMO continuum overview (courtesy of F. Bodin) 
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3.2.2 PHIDIAS: an edge-to-HPC digital continuum framework for earth system 
            sciences 

The European project PHIDIAS will address the development and concrete realization of a set 
interdisciplinary services and tools based on HPC for earth system sciences to exploit large 
datasets of public European interest provided by satellite observation of earth, and provide fair 
access to these processed datasets and value added services (from “standard” data processing 
applied to big data heterogeneous datasets, to more advanced services such as AI or HPC on 
demand, called “urgent computing”) through large data storage capability and high bandwidth 
network across Europe (see Figure 17).  
The solutions which will be tested and validated leverage existing HPC and data management 
capacities and are suitable by-design to spin-off across other scientific fields. In particular 
PHIDIAS will develop and offer a catalogue allowing users to discover and access data, but 
also relevant open source software, public application programming interfaces (APIs) and also 
interactive processing services. This catalogue will implement interoperable services for the 
discovery, access and processing of the data, and be connected to other major data repositories 
such as the European Data Portal, GEOSS, NextGEOSS, and the European Open Science Cloud 
(EOSC). PHIDIAS will also implement an end-user web common interactive processing 
service based on notebook and datacube technologies. This, coupled with powerful toolboxes, 
such as the Orfeo Toolbox, and AI methods, such as convolutional neural networks, will allow 
new users to easily (since the data are pre-processed in the datacube) have access to the HPC 
capacities and develop new algorithms. This may lead to commercial applications, and new 
decision-support tools for public authorities that could be executed on the DIAS (“Copernicus 
Data and Information Access Services”), and that will be evaluated as part of the economic 
equation for a sustainable business model for the Industrialization of these proof of concept 
services. Finally, PHIDIAS will also directly contribute to the development of EOSC by 
industrializing its HPC/HPDA/AI processes and algorithms, as well as making its services 
available and accessible through the EOSC portal, in compliance with the EOSC rules of 
participation.  
This will not be business as usual for HPC, where resources are mainly allocated through a Peer 
Review process. This new usage, demonstrating the capacity to offer operational capacity for 
near real time link to the instrument (edge) for data processing, but also on demand access to 
computational resource, up to urgent computing automatically triggered in case of automatic 
detection, on the fly, of natural hazards, will require adaptation of the data flow of the HPC and 
data centers involved within this project across Europe, to offer Infrastructure As a Service 
services (IaaS). This will require complex architecture design, addressing challenges on end-
to-end security and SLA needs for these new usage and best practice acquired from project 
partners with demonstrated skills on spatial data logistics and HPC management. By doing this, 
PHIDIAS not only aims to leverage the large amount of valuable data generated by these 
research infrastructures but also to increase usage and ease access to HPC and data storage 
capacities which represent the foundations of the emerging European data infrastructure that is 
need to handle huge societal that our society are facing, such as climate change and biodiversity 
preservation.  
PHIDIAS will address three concrete use cases:  

• in oceanography: improve the use of cloud-based services for marine data management, 
service and processing, considering the DIAS and the EOSC challenges. This includes 
improving long term stewardship of data (storage, capacity, archive, metadata 
enhancement, …), mix of in-situ data with other data sources especially satellite data 
for cross validation or resolution improvement, ... requiring new data storage and 
processing capacities; 
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• an intelligent screening of satellite data for detection and identification of anomalous 
atmospheric composition events in order to improve accuracy and genericity. This will 
include an HPC/AI based smart filtering service in order to 1) detect relevant data within 
the huge volume of measurements, 2) identify and assess the pertinent information, and 
3) qualify the targeted data for dedicated exploitation by users and provide access to 
filtered data and corresponding metadata; 

• big data earth observation by enhancing the toolchains scalability for environmental 
monitoring from the end-users needs of Theia land data centre network and 
geoinformation for sustainable development national satellite data infrastructure for 
environmental research and environmental management and policy. 
 

 
Figure 17 Synthetic view and components of the main workflow of the PHIDIAS project (courtesy of B. 

Dintrans) 
  
 

3.3 Leading to new services like urgent computing 

After being widely used since decades for science and innovation, converged HPC+AI systems 
inside a fully connected digital continuum are now also used for (real-time) decision making 
for public and private bodies. In a case of natural hazard (like earthquake, tsunamis, flooding, 
…), biological hazard (propagation of pandemic like the ongoing 219-nCoV coronavirus), 
industrial damage (rupture of a dam, incident on an industrial plant, …) or (cyber)terrorism, 
HPC systems could help when properly parametrized (including installation, regular tests in red 
button mode of the full alert workflow) used by allocating HPC and storage facilities on the fly. 
Such use modes are developed by the ChEESE CoE in Europe.  
Early warning of natural hazards is essential for an effective mitigation of related socio-
economic and environmental impacts, particularly in case of tsunamis, earthquakes and 
volcanoes. Prompt reaction to these scenarios requires of computing infrastructures, 
complicated data workflows, and engagement with stakeholders formally involved in 
emergency management (e.g. the European Emergency Response Coordination Center, ERCC) 
through shared protocols and policies.  
However, urgent supercomputing during the aforementioned phenomena involves complexities 
at many levels. From a technical perspective, the frameworks required to manage the data 
intake, analysis, simulation pre-processing, execution (often on tier-0 systems), and final post-
processing are very complex. On the other hand, access policies to HPC clusters that account 
for the time constraints imposed by urgent simulations are radically different from current 
resource access at public supercomputers.  
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The CoE ChEESE is preparing flagship HPC applications in earth sciences and natural hazards 
for the Exascale era. The CoE has a strong commitment to build services for industry and public 
governance bodies (e.g. civil protection), including urgent computing end-to-end workflows 
of data coming from networks of sensors to HPC resources s for earthquakes and 
tsunamis. A series of pilot demonstrators on urgent seismic simulations, Faster-Than-Real-
Time (FTRT) Tsunami simulations, and high-resolution volcanic ash dispersal forecast are 
being developed to test future Exascale urgent computing workflows supporting contingency 
plans for seismic, volcanic and tsunami events. On the other hand, building a prepared society 
resilient to natural catastrophes requires the capability of managing in a probabilistic framework 
the complexity of the natural phenomena and the large uncertainty associated with their 
development. This requires performing large ensembles of accurate scenario simulations to 
reproduce the complex physics of the natural systems and the wide variability of initial and 
boundary conditions.  
This is the probabilistic hazard assessment, which ChEESE will implement in another series of 
pilot demonstrators to answer questions like: 

• How big will the next volcanic eruption be at Jan Mayen in Norway? How will that 
potentially impact the population and the air traffic in Europe, considering the statistical 
variability of wind intensity and directions? 

• What is the probability of ground acceleration exceeding a given threshold at a nuclear 
plant site, or for a critical infrastructure in Europe? What is the probability that a large 
earthquake in the Mediterranean produces a tsunami wave higher than one meter in the 
Marseille harbor? 

Another example is the tsunami service providers, providing tsunami warnings in the 
framework of the systems coordinated by IOC/UNESCO worldwide, and other national 
tsunami warning centers, are striving to complement, or replace, decision matrices and pre-
calculated tsunami scenario databases with FTRT tsunami simulations. The aim is to increase 
the accuracy of tsunami forecast by assimilating the largest possible amount of data in quasi 
real time, and performing simulations in a few minutes wall-clock time, possibly including the 
coastal inundation stage. This strategy of direct real time computation, that could seem 
unfeasible a decade ago, it is now foreseeable thanks to the astonishingly recent increase in the 
computational power and bandwidth evolution of modern GPUs. 
This is “Early Warning” and, for that, ChEESE will make use of the most efficient HPC 
architectures, software and workflows to demonstrate prototype early warning systems for 
tsunamis. It is depicted in Figure 18. 
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Figure 18 Example of a complete end-to-end workflow of real time tsunami alert system (courtesy of A. 

Floch) 
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4 Some updates of application roadmaps 

Before describing in a more detailed manner how different scientific disciplines and industrial 
and engineering applications are considering their future, it should first be recognized that there 
are now three main categories of roadmaps. Depending upon the relative importance of the 
underlying physical laws, if any, vs. the information content of a wealth of data relative to the 
field, if any, the various challenges can be addressed in different ways: 

• need for always increasing compute power (Exascale and beyond) for simulations based 
mostly on physical laws.  

• need for using ML, more precisely computer DL, to extract knowledge from data of 
various sources. Most of the time the data come from earlier collections or from 
experiments performed on the physical system at stake;  

• need for developing new hybrid methods, to take the most advantage of both 
approaches.  

The simultaneous use of HPC for solving the physical laws and of ML, based on either 
experimental or computer-generated data, for replacing some parts of the HPC calculation is 
indeed a way to reduce “time to solution”, among other possible benefits. It seems that such 
hybrid methods, although still in their infancy for a large number of them, are developing quite 
rapidly. Examples, most of them detailed below, concern meteorology and climate, nuclear 
fusion, biosciences and human health, combustion, material sciences, social sciences, … It 
should nevertheless be emphasized that the convergence between HPC and ML is only at its 
beginning as far as applications are concerned. For most of the application developers, their 
roadmaps are in a large part still dominated by the need to access to significantly increased 
computer resources, in a "more-or-less traditional" HPC manner. The convergence with ML is 
included in a slightly more modest way by most of the application developers, e.g. to document 
which parts of the calculations could benefit from such a convergence. This is underlined below, 
for each of the application domain at stake, by using special characters (italics) to recognize the 
parts of the roadmaps benefiting from this convergence. We should indeed recall here that the 
aim of the present deliverable is to report about actual roadmaps produced in the various 
application domains, even if these roadmaps are not yet taking full advantage of the foreseen 
convergence described above. Another specific example, which also summarizes some of the 
developments described in Chapter 3, is given in the next section. 
Despite the above differences, it should already be underlined that all the above approaches do 
require increased HPC-compute and data-processing power to address the challenges, as they 
refer to systems of ever-increasing complexity and multi-disciplinarily nature. 

4.1 Application example for HPC/AI convergence 

Subgrid models are required for many predictive simulations. One way to develop such models 
is to perform fully-resolved simulations for generating “truth” data. This data can then be 
analyzed with ML/DL or used for training ML/DL models. 
Recently, German researchers presented different reconstruction- and regression-based data-
driven approaches [13]. They used HPC to generate large datasets, which were then fed into a 
developed DL framework. Training the DL networks was only possible by using again 
supercomputers as the amount of training data was very large showing the convergence of HPC 
and AI. 
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More precisely, Figure 19 shows the generator and discriminator parts of the used DL network 
used by the German researchers. As the network is used to model underlying physical processes, 
the researchers emphasize the need for developing physics-informed networks [14]. 
 

 

 
 

4.2 Weather and climate applications 

Roadmaps for weather and climate share a number of common issues and challenges, among 
which the need to reach higher spatial resolution is a long-standing concern. High spatial 
resolution is indeed crucial for predicting weather within the next few days as local 
meteorological phenomena affect almost all human activities and therefore have to be predicted 
at the scale where these activities take place, i.e. locally. Kilometer, or even sub-kilometer, 
scale resolution weather predictions are presently within reach and this will drive many 
developments over the next five to ten years. High spatial resolution is also required for climate 
modeling: The Intergovernmental Panel for Climate Change (IPCC) had concluded in its fifth 
assessment report that detection and attribution studies focused on extreme events were 
constrained by model resolution. Recent studies have shown that enhancing the horizontal 
resolution of models is seen to significantly affect aspects of large-scale circulation as well as 
improve the simulation of small-scale processes and extremes when compared to earlier, lower-
resolution models. 
There are also specific challenges for each of these domains. For example, meteorology has to 
interface with an extremely large number of users, so that weather models have to include the 
generation and management of data bases so that the users can interface on an operational basis 
with their own models. The consequences are developed below. On the other hand, climate 
simulations, although they are thriving toward kilometer-scale resolution on the longer term, 
will still need to rely on sub-grid scale parameterizations for a large number of years. They are 
now methods relying on ML, applied to either experimental or computer-generated data, which 
may facilitate addressing the problem of scale-dependency of parameterizations. This is also 
developed below.  
At the same time such physical improvements of models are undertaken, it is also of utmost 
importance to adapt codes to the new architectures, with particular concern to accelerators. The 

Figure 19 DL network used for subgrid model development. Data generation and training were 
performed on supercomputers (courtesy of M. Bode). 
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European state-of-the-art in this field is quite diverse, with a number of weather or climate 
models being still well adapted to classical CPUs, while initiatives to transform the codes for 
an efficient use of GPUs has shown clear success. It is likely that this trend will continue to 
develop and, quite likely, to accelerate.  

4.2.1 Weather prediction 

Predicting the weather at higher spatial and temporal resolution with longer lead times comes 
firstly as a result of improved model initialization. Such improvement is driven by more 
accurate assimilating methods, the wealth of data coming each day from in-situ networks, 
satellite-borne instruments and, soon to come, connected sensors on all type of personal devices 
(cell phones, cars, …). Observational data are delivered from actual systems at a rate close to 
one billion per day, but this rate will keep regularly increasing due to more numerous, more 
refined satellite-borne sensors and to new connected sensors. Furthermore, the numerical 
weather prediction model must be run very fast, so that it delivers its results for the forecast to 
be delivered in time to the public and all types of users. Typically forecasting the next 24 hours 
should not take more than a few wall-clock minutes.  
 

 
Figure 20 Progress in the degrees of freedom of the European Centre for Medium-range Weather 

Forecasts (ECMWF) operational global atmosphere model in comparison to Moore’s law. The ambitious 
goal of reaching an operational 1 km horizontal resolution with 180 levels in 2030 requires a faster 

progress. The numbers indicate the average grid-point distance in kilometers and the corresponding 
spectral resolution and levels used (source [15]) 

 
 

The horizontal spatial scale of the most advanced global numerical weather prediction models 
is now about 10 km (see Figure 20), although less-demanding limited-area models are run at 
the 1 km horizontal scale. There is whatsoever always scientific incentive to run at still 
improved spatial resolutions as a number of atmospheric phenomena, and especially extreme 
weather events, have important features at sub-kilometer scale. It should also be emphasized 
that the value of weather simulations comes not only from high-resolution models, but also 
from two other factors:  
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• the number of realizations which can be performed during the forecasting time. 
Atmosphere is indeed a deterministic chaotic system and consequently, despite 
improved assimilation methods used for providing the initial state of the forecast, 
uncertainties present in the smaller scales of the initial state lead, over a few days, to a 
progressive decorrelation of atmospheric trajectories. Characterizing the rate at which 
this scatter develops is still the only way to assess the decreasing value of the forecast 
over the forecast range. Present numerical weather prediction models may use as much 
as 100 realizations for producing a single forecast; 

• the model used for the prediction system must also be enriched for better physics, better 
interactions between the atmosphere and its interfaces (soils and vegetation, upper 
ocean, atmospheric chemistry, …). While the early (hydrostatic 2D) models had only 
three prognostic variables (the two horizontal components of the wind and the 
temperature), actual non-hydrostatic 3D models include a number of additional 
variables (vertical wind, pressure, soil moisture, sea-surface temperature, …). 
Furthermore, subgrid-scale phenomena are parameterized with schemes of increased 
sophistication and realism.  

All this results in ever-increasing compute power. There are indeed 12 computers reserved for 
meteorological forecasting within the first 150 entries to the last Top500 list. 
A further new trend is to allow users of the forecasts to interact directly with the prediction 
system, in order for them to extract information at full scale. This would mean allowing users 
to actively shape these prediction systems, reconfiguring the “value chain” as a collaborative 
space. Such an opening up of the prediction systems would not only accelerate the uptake of 
information by existing communities but also create opportunities for innovation by new 
application communities. Such developments would require a comprehensive application 
programming interface to extreme-scale computing applications. 

4.2.2 Climate modeling 

Simulating the climate and its changes under anthropic influence shares, as already said, a 
number of challenges with numerical prediction: need for improved spatial resolution, need for 
larger ensemble of realizations, and need for improved physical description of the system. But 
for each of these challenges, there are specific “climate features”. 
The long-term goal is still to develop and run global coupled climate models at the 1 km 
horizontal scale for two main reasons:  

1. kilometer-scale phenomena are of crucial importance for driving climate processes and 
understanding greenhouse effect and its further change, in particular convection, i.e. the 
vertical transfer of heat within the atmosphere through convective cells, and the 
resulting development of clouds;  

2. a number of extreme meteorological events, either in actual or future climate are 
kilometer-scale events. One main difference between simulation of weather and 
simulation of climate is nevertheless the length of the simulated time. While the counts 
are in days or weeks, up to a few months, for weather forecasting, they are in decades 
or centuries, up to millennia, for climate. Such an increase of the length of the 
simulations by about four orders of magnitude has a number of consequences. Even 
accounting for the fact that, from a wall-clock perspective, a climate simulation can be 
realized in months, as compared to hours for weather, therefore reducing the gap by 
three orders of magnitude, the actual rate of annual increase in compute power shows it 
will not be possible before years to run coupled climate simulations, as they should, at 
the same spatial resolution as weather simulations. As an example, the most advanced 
high-resolution coupled climate models are still in the demonstrator phase under the 
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ESiWACE CoE, with a resolution of 9 km in the ocean and 16 km in the atmosphere 
(see Figure 21). This means that climate modeling has also to develop alternative 
strategies. 

There is indeed a developing trend to emulate and derive much-improved parameterization 
schemes, therefore making simulations with actual spatial resolution more realistic. ML is key 
to such developments: data coming either from in-situ observations or from very-high 
resolution models of specific phenomena (e.g. convection, cloud microphysics and cloud 
formation, surface vegetation, …) are used as well-documented data bases for deriving, from 
the climate model variables themselves, the requested output from subgrid-scale phenomena. 
Such a strategy would also further allow for automatic scale-dependency of sub-grid 
parameterization schemes, a long-standing issue in climate modeling. This type of hybridization 
between physically-based laws and data-based information is likely to become more and more 
popular for climate modeling. 

 

 
Figure 21 Test simulation of climate with high-resolution coupled climate model (courtesy of M. Castrillo) 

 
 

4.3 High-energy particle physics, astrophysics, and plasma physics 

These fundamental sciences address deep questions for humanity and society about the nature 
and origin of our Universe and the matter it contains. Plasma physics can also have unparalleled 
industrial and economic impact within the next 20 years by demonstrating of the feasibility of 
a clean and unlimited energy source based on nuclear fusion. In last few decades, all three 
disciplines have undergone a dramatic change and accelerated progress due to the development 
of powerful observation and experimental facilities and in tandem the development of HPC 
infrastructure.  

4.3.1 High-energy particle physics applications 

Such applications seek to explain the nature of matter in the universe. The standard model of 
particle physics is the subject of stringent experimental and theoretical research at the LHC at 
CERN. A significant component of these tests is the requirement for precise, robust calculations 
of strong interaction effects. This can be done through QCD, for which one has to turn to 
discretization of space-time on a four-dimensional hypercube, the so-called Lattice QCD 
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(LQCD), for achieving useful numerical simulations. The available simulation codes for LQCD 
are highly advanced and perform well on many HPC architectures and computing paradigms. 
The simulations can be described briefly as the solution of a very high-dimensional integral, 
the QCD path integral, by Monte Carlo methods, followed by the evaluation and averaging of 
observables on the stochastically generated ensembles. This requires repeated calculations of 
the determinant of a large sparse matrix and the inversion of a high-dimensional matrices. There 
has been enormous progress in the last ten years, but the extension of the LQCD approach to 
new problems will require at least a 1000-fold increase in computing power. The LQCD 
community has been highly successful up-to-now in making use of GPUs, but present multi-
level methods will require larger memory footprint and hence communication bandwidth, 
which is a primary concern for future LQCD implementations.  

4.3.2 Astrophysics 

Any breakthroughs or improvements in the answers to fundamental questions in astrophysics 
(e.g. origin and evolution of the universe, dark matter and dark energy, solar physics, …) will 
have deep effect on society, an example being the recent proof of existence of gravitational 
waves. Space weather directly impacts many activities and its predictive modeling is crucial for 
a technologically-dependent society. Very large amount of data from observational facilities, 
one typical example being the SKA telescope, need to feed numerical simulations, for both 
proper interpretation and discrimination between models. Such high-performance simulations 
use combined fluid dynamics and kinetic approaches.  
There are at least three scientific drivers for accessing more powerful HPC infrastructures:  

1. increase by orders of magnitude the Reynolds numbers in simulations;  
2. increase the resolution of the full universe resolution simulations and better take into 

account gravitational physics;  
3. consider several fluids like baryonic gases and hydrodynamics into n-body simulations. 

The complexity of astrophysics and cosmology modeling and comparison with 
observations leads to hundreds of terabytes of data per simulations. Huge data 
management of 4D structures are required to understand the complex nonlinear physics 
and feedback among the various scales/objects/processes. Immersive (remote) data 
visualization is required to identify key structures. It should be mentioned that hybrid 
methods, associating physics-based modeling and DL, are presently developed for more 
efficient simulations. As an example, for the re-ionization which affected the cosmic 
gas 109 years after the big-bang due to the propagation of radiation from the early 
astrophysical sources is simulated by splitting the calculations in two parts. DL using 
data issued from simulation of radiative hydrodynamics is providing re-ionization 
processes, which can then be incorporated in non-radiative, and consequently much 
cheaper, simulation. The results, shown in Figure 22, demonstrate the value of this 
hybrid method. 
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Figure 22 Space-time view of the re-ionization process. Vertical axis shows a region of space extending 
over 12 Mpc (“Megaparsec”), while the horizontal axis covers the first 109 years of the universe. Hor 

regions are shown in red, dark regions correspond to ionized zones, and the variation in green color refers 
to the gas density (courtesy of D. Aubert). 

 
 

Some early experiments of coupling numerical methods and ML are ongoing in the field of the 
study of the re-ionization process where costly operations of radiative transport are replaced 
by a learnt model and coupled with the rest of the simulation, i.e. gravitation and 
hydrodynamics.  
The team of D. Aubert from Observatoire de Strasbourg is currently implementing such 
approaches based on auto-encoders on the Jean Zay system at IDRIS on up to 256 GPUs 
applied to cubes of 128 Mpc on meshes of 10243 (see Figure 23). 
 

 
Figure 23 Coupling of the HPC/AI re-ionization code using auto-encoders for the radiative transport 

module (courtesy of D. Aubert) 
 

4.3.3 Plasma physics 

Plasmas physics has a very wide range of technological applications, including the destruction 
of toxic materials, modification material surfaces (coating), food processing, plasma torch, and 
cancer treatments, not to mention the demonstration of the feasibility of an energy source based 
on nuclear fusion. Theory and predictive modeling play indeed crucial roles for ITER 
(“International Thermonuclear Experimental Reactor”). The most challenging in terms of HPC 
resources is the so-called first principles modeling codes that are concentrating on the detailed 
understanding of, e.g., the many instabilities which lead to operational limits. These challenges 
are not very different in nature from the ones faced in other fields such as astrophysics, fluid 
dynamics and weather forecasting: they stem from the wide range of spatial and time scales to 
be covered, here from meters and seconds at the machine macro-scale down to millimeters and 
microseconds magneto-hydrodynamics (MHD) and turbulence microphysics. Nearest future 
developments in actual gyro-kinetic fusion codes are concerned with the modeling of both ion 
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and electron dynamics. In the next ten years, MHD first principles modeling should approach 
the realistic plasma parameters for ITER as well as further developing their level of complexity 
and integration by including plasma-wall interactions. The final goal of such modeling is the 
“numerical tokamak”, with increased predictive capability for ITER. However, for the next ten 
years, one can expect only more modest achievements, such as in global MHD-electromagnetic 
turbulence models with plasma core-edge-surface integration. The need to increase the spatial 
resolution, as required for capturing the many instabilities that occur in fusion plasmas and 
may be detrimental to ITER and tokamaks, could be somewhat alleviated by using hybrid 
methods between “traditional” HPC and ML. It indeed appears that data from earlier 
tokamaks (e.g. the Joint European Torus) can be used to train a method to predict the 
appearance of disruptive instabilities when simulating the plasmas in the ITER machine [16]. 
As for the re-ionization problem mentioned above, the rationale for such a hybrid method is 
very close in principle to the one already described for weather and climate simulations. 

4.3.4 Some recommendations  

Some recommendations are emerging for preparing to Exascale. Due to small-scale 
nonlinearities and instabilities, many codes are using implicit algorithms, and hence require 
inversion of large (often ill-conditioned) matrices leading to large memory footprint: having 
sufficient memory per core remains then essential. Both communication and memory 
bandwidth remain then a primary concern. The current trend is however to offer new computing 
architectures with limited memory-per-core. Adapted numerical methods (especially in 
matrices inversion) should then be rapidly developed to adapt to such future Exascale 
architectures. Strong collaborative groups or consortia which combine different specialists in 
physics, applied mathematics and computer sciences should be strongly encouraged. It may, 
however, take some time before new methods become available, quite often too long with 
respect to the existing deadlines needed for urgent issues and modeling-based decisions, for 
example in ITER design and construction. This leads to the recommendation of keeping a good 
balance between urgently-needed scientific production, achievable only with existing 
numerical tools, and development of advanced numerical methods and codes for new HPC 
architectures. This calls consequently for the availability of a correspondingly broad range of 
computer architectures. Without such a balance, a memory bottleneck for Exascale computers 
would limit the progress in the simulation of nuclear fusion plasmas and astrophysics, like in a 
number of other large non-linear problems. 

4.4 Biosciences  

Life science, biochemistry, biology and medicine are vast areas of extreme societal importance. 

4.4.1 Biomolecular sciences  

Such applications fundamentally are at the basis of all these broad areas, ultimately rely on 
advancing the computational state-of-the-art applied in the domain. It is already possible to 
simulate systems with millions of atoms such as viral capsids, fusing vesicles, drug delivery 
systems or other multi-molecular assemblies. With the upcoming Exascale compute capability 
systems, this limit will be pushed-up, and molecular modeling will be able to tackle a much 
wider scale of bio- and non-bio systems. At the same time, some of the greatest challenges in 
the field are how to make predictions on longer timescales and enable high-throughput 
structural studies. 
Understanding structure and motion in biomolecules is a fundamental challenge. MD 
simulations have become a universal tool to understand both how molecules interact and move, 
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for instance how pumps transport molecules across cell membranes, how ion channels respond 
to pharmaceutical compounds, how virus capsids are assembled, or how complex organs such 
as the skin are formed from lipid building blocks. In addition to using standalone simulation 
engines (such as GROMACS developed by the BioExcel CoE), the field has made substantial 
progress on advanced techniques for devising workflows and ensemble simulations for studies 
of large, complex systems. Those latter approaches are extremely important for reaching 
Exascale performance, while integrating multiple tools with powerful core applications 
dramatically improves the productivity of researchers and shorten the time-to-solution. 
Integrative structural biology is a rapidly evolving field. Dissecting the processes at atomic 
detail is invaluable, but there is no single technique that can provide all the answers. 
Researchers increasingly rely on coupling computational modeling with experimental data. E.g. 
one of the most popular applications for integrative modeling, HADDOCK (see below) is 
supported by BioExcel CoE.  
Modeling reactions, catalysis, photochemistry, and detailed binding are relatively little studied 
in the life science domain. As the amount of structural and biological data has grown, and given 
the complexity of the molecules at stake, the facing challenges cannot be handled neither with 
classical methods nor with pure quantum mechanics (QM). An attractive solution to this 
problem is to employ hybrid and multi-scale methods combining QM and molecular mechanics 
(MM). 
Drug discovery and optimization is becoming ever more crucial for the pharmaceutical 
industries. Therapeutically used peptides and proteins are engineered to increase their affinity 
towards the corresponding binding partners. Routine use of integrative modeling via docking 
is a powerful approach to model the interaction of drugs and compounds with their targets and 
highly accurate molecular dynamics-based free energy calculations for large scale mutation 
scans in proteins, DNA, and small organic molecules to improve their binding affinity and 
stability. Biomarkers are often used in different stages of the drug development processes or as 
diagnostics. Since the biomarker-design process is similar to drug development, molecular 
simulation methods are an integral part of this process. 
GROMACS is designed mainly for simulations of proteins, lipids, and nucleic acids. Its future 
development will focus on a number of key user-requested features, in particular adding 
multiple time stepping, driving simulations with external data, facilitating generation of input 
data, and better free energy tools. Performance optimization for additional new platforms will 
also continue together with efforts targeting significantly improved scaling by using ensemble 
parallelism, as well as co-design projects to port the code to new accelerator platforms (see 
Figure 24).  
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Figure 24 Ensemble simulations in GROMACS provide close to 100-fold reduction in time-to-solution for 
opening 20 base pairs on Piz Daint CPUs + P100 GPUs at Centro Svizzero di Calcolo Scientifico, 

Switzerland (courtesy of R. Apostolov) 
 
 

Compatible with the GROMACS code, the PMX package is used as an automated procedure to 
generate hybrid structures and topologies for the amino acid mutations in all commonly used 
force fields. The development of the PMX package will follow two main directions. Firstly, for 
successful future usability, PMX will be fully rewritten in Python3. Secondly, it will 
incorporate frequently user-requested features, the addition of new mutation libraries and 
creation of workflows for free energy calculation setup and analysis. 
HADDOCK is a computational docking program that follow a data-driven strategy. It has been 
applied successfully and reliably to a plethora of biomolecular systems, and more than 60 
structures solved via HADDOCK docking have been deposited in the protein data bank. 
HADDOCK’s development focuses on the continuous improvement of the web user’s interface, 
and the design of a new modular version, HADDOCK3. The web server is being concomitantly 
developed alongside the local HADDOCK version, so that new features are readily available 
with the user-friendly interface. The modular design of HADDOCK3 will provide flexibility 
for workflow creation and a straightforward framework to integrate new tools as well as more 
efficient execution. 
Upcoming Exascale compute resources give a tremendous opportunity to explore in ever 
greater detail biochemical reactions such as enzyme function. In order to take full advantage of 
those capabilities, it is necessary to improve the interfaces between classical MM/MD engines 
such as GROMACS and QM codes such as CP2K, an open-source, highly parallelized density 
functional theory (DFT) engine with large user base (see Figure 25). Coupling of GROMACS 
with CP2K will allow multi-scale simulations, where part of system undergoing a chemical 
reaction is treated at the QM level (e.g. with DFT), while the rest, and much larger, part of the 
system is described with a classical molecular mechanics force field. The updated roadmap 
reflects the transition to using CP2K as a QM engine due to its larger user-base and advanced 
compute capabilities.  
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Figure 25 High-throughput hybrid-QM/MM modeling of biomolecular systems. A related, previous, 

implementation using the same distributed computing model achieved linear scaling until 40,000 cores on 
an older Cray CX40. Much higher scalability is expected with the new codebases and redesigned 

implementation (courtesy of R. Apostolov). 
 
 

Still in the field of molecular processes, but turning now to vegetation problems, very recent 
new advances concern the simulation of processes involved in the capture and transformation 
of photon energy into chemical energy by the purple bacteria, in a way that is similar, although 
different in some respect, to the photosynthetic plant activity (see Figure 26). The purple 
bacteria is relatively simple but very efficient to produce its metabolic energy from the only 
few photons which reach it at the bottom of the lakes where it develops. The processes at stake 
are nevertheless very complex, as their simulation did require the consideration of 136 millions 
of atoms, three order of magnitude more than in standard simulations, with a time step of 
1 msec. This requires multi PetaFlop/s computers.  
 

 
Figure 26 Atomistic model of the chromatophore of the purple bacteria (source [17]) 
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4.4.2 At the larger scale, a growing number of issues concerns human health 

Human-based computer models and simulations are a fundamental asset of biomedical 
research. They augment experimental and clinical research through enabling detailed 
mechanistic and systematic investigations. Owing to a large body of research across 
biomedicine, their credibility has expanded beyond academia, with vigorous activity also in 
regulatory and industrial settings. Thus, human in silico trials are now becoming a central 
paradigm, for example, in the development of medical therapies.  
Biomedical research is particularly sensitive to computational tools and their efficiency on large 
systems because, quoting PRACE, “Life science is one of the fastest growing users of HPC 
both in Europe and worldwide, with a wide range of uses from chemistry, bioinformatics, and 
structural biology to diagnosis and treatments in clinical settings.” The topics at stake may 
concern, among others, neuro-musculoskeletal treatments, in silico heart assays on HPC, 
simulation of blood flow through a stent (or other flow diverting device) inserted in a patient’s 
brain, or in silico drug trials in populations of human cardiac cell. They all require HPC 
modeling for predicting safe and efficient medical interventions and treatments. Other examples 
are schematically represented in Figure 27.  
This wide range of scales extends from the organization of the health-care system to the 
molecular level, where the deepest roots of the genome reside. Compared to other complex 
multiscale systems, in biomedicine the lowest scales are largely responsible for emergent 
properties at the highest scales. Conversely, upper scales feedback to lower ones, creating a 
non-linear coupling loop. This does not mean that a complete system's understanding is required 
to simulate all scales, but it shows that neglecting the effects of any single scale upon the others 
may lead to erroneous predictions. Considering that the final target is human healthcare, it is 
imperative to arrive at the correct prediction. 
 

 
Figure 27 Intervening scales and organizational levels in computational biomedicine, from health care at 

the top to cell and molecular scales at the bottom (source [18]) 
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Cardiovascular diseases, having a direct effect on the function of the heart itself, be it on the 
electrophysiology, mechanics or blood flow, and disorders in the arteries, be it aneurisms in the 
abdominal aorta or in intracranial arteries, or stenosis in carotid or coronary arteries, accounts 
for half of sudden deaths in Europe, calling for urgent and challenging improvements in patient 
risk stratification and prediction of clinical intervention. Human cardiac physiology is one of 
the most advanced areas in physiological modeling and simulation with many areas of medicine 
relying on a molecular understanding of the underlying human biology. Indeed, the 
pharmaceutical industry’s success has been largely underpinned by such knowledge. Its 
business model is being seriously challenged today, with rapidly increasing sums of money 
invested in an attempt to maintain an acceptable pipeline of patentable products. However, the 
central premise of drug production, namely that one can hope to produce “blockbuster” one-
size-fits-all drugs for the entire global population, has proven impractical; most drugs that have 
been developed for specific disease treatments only apply to subsets of the population. Instead, 
the industry now needs to think in terms of multiple drugs, which address any specific disease 
case, using stratification (based primarily on gene sequencing) as a first step along the way to 
ultimate personalized drug selection and treatment. Due to advances in gene sequencing, the 
basic patient specific data are now available, allowing the development of personalized drug 
treatment to be initiated. Next-generation of drug discovery, relying on computational 
predictive models with the ability to test millions of compounds in silico, will provide accurate 
and precise results and reduce the number of experimental tests needed on the design process. 
Biomedical systems are, however, difficult to simulate. Simulating physiology requires 
complex computational models that, to be accurate, require very fine space and time 
discretization. The models are usually non-linear, increasing the need for sophisticated solver 
strategies, which are always computationally expensive. Compounding this, space and time 
scales range very widely in these systems, each scale being solved using a different model, 
increasing the complexity through a strong multi-scale and multi-physics character. The choice 
of medical intervention to save a person’s life requires the bringing together of substantial 
quantities of data together with the performance of multi-dimensional simulations before the 
event in question occurs. Such forms of calculation are among the most demanding, as they 
need to be done rapidly, accurately, precisely and reliably. Moreover, they must include the 
quantification of the uncertainties associated with them. All these systems are multi-scale in 
nature, as their accuracy and reliability depend on the correct representation of processes taking 
place on several length and time scales. Only now, when approaching the Exascale era, can one 
expect to be able to tackle such problems effectively and, eventually, in a routine manner. 
Containerization is explored in several scenarios. At the molecular level, an example concerns 
Acellera, a CompBioMed CoE consortium partner. Its “In Silico Binding Analysis” service 
makes extensive use of Amazon's EC2 cloud computing platform, for fulfilling the need to meet 
the pressing deadlines of customers. At the other end Alya, the multi-physics code developed 
by Barcelona Supercomputing Center, Spain, solves biomedical applications at the cell, tissue, 
and organ level (see Figure 28). 
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Figure 28 Fully-coupled fluid-electro-mechanical simulation of a heart. The sequence shows the systole 

process of a third degree atrio-ventricular block and the action of a trans-catheter intra-ventricular 
pacemaker (the small red cylinder close to the heart apex). Tissue is colored by electrical activity and 

blood shows the so-called Q-criterion, which depicts blood flow vortices evolution (courtesy of A. 
Santiago).  

 
 

A powerful way to attack multi-scale simulations deployed in HPC cloud environments is with 
data analysis techniques of all kinds, including genetic algorithms, ML, and AI. In their most 
complex form, these techniques can combine high- and low-resolution simulations with 
experiments of all kinds, to obtain the correct input parameters, to assess sensitivities of inputs 
or to create surrogate predictive models. Examples concern, e.g., simulation of aggregation of 
blood platelets, for which five parameters, related to the deposition process, can be tuned by 
using comparisons between in vitro experiments and simulations. Hybrid methods, where HPC 
simulations are combined with ML, are developing quite rapidly and are expected to be able to 
solve both the accuracy and time-to-prediction problem by learning predictive models using 
expensive simulation data, a kind of post-processing method (see Figure 29). This would 
nevertheless present more difficulties, such as I/O, storage and data analysis. The synergies 
between classical, quantum simulations and ML methods, such as artificial neural networks, 
have the potential to drastically reshape the way predictions are made in computational 
structural biology and drug discovery. 
One should finally underline that visualization is still of great importance for all the above 
problems at stake, as simulation results are often best represented in the more familiar time-
dependent three-dimensional form. 
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Figure 29 Overview of a combined MD/QM simulation and ML approach From left to right (source [19]): 
(a) MD data generation will produce output files size of several petabytes; (b) ML may then replace QM 
to predict dihedral energies given a neural network trained with QM simulations; (c) data augmentation 

by MD will then improve the description of some processes (protein-ligand binding poses for a set of 
protein-ligand pairs with unknown binding mode; binding affinity data for a set of resolved protein-ligand 

complex structures of unknown affinities). 
 

 

4.3.3 The human brain 

Understanding how the human brain is structured and how it functions remains one of the major 
challenges facing neurosciences. Medical imaging, which has experienced a tremendous boom 
since the mid-1970s, has greatly contributed to the improvement of knowledge in this field by 
allowing in vivo and non-invasive exploration, unlike exploration methods based essentially on 
ex vivo studies of anatomical parts developed by the major neuroanatomists of the early 
twentieth century. And yet, medical imaging still does not map the cytoarchitecture 
(understanding which zone of the cortex is responsible for vision, motricity, audition, emotion, 
cognition, …) of the cerebral cortex. This project performed in the field of the FET Human 
Brain Project by researchers of CEA’s Neurospin team using the Jean Zay converged HPC 
system of GENCI at IDRIS, aims to develop new approaches combining numerical simulations 
and ML to eventually decode in vivo the cellular organization of the cerebral cortex from 
magnetic resonance imaging data coming from two state-of-the-art 3 T and 7 T whole body 
Magnetic Resonance Imaging (MRI) scans and three preclinical MRI scans at 7 T, 11.7 T, and 
17 T.  
The Neurospin team developed a simulation code called MEDUSA which will be used in the 
context of cerebral cortex studies for allowing to perform successively the three simulation 
steps: 1) creation of a virtual fabric 2) Monte-Carlo simulation of the diffusion process and 3) 
simulation of the MRI signal weighted in diffusion. 
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Figure 30 Overview of brain cytoarchitecture simulation/learning (courtesy of C. Poupon) 

 
 

At the end of the large-scale simulations to be conducted on the supercomputer provided, the 
Neurospin microstruture team will have a dictionary consisting of 0.5x106 elements, each 
element corresponding to a pair of vectors, the first vector containing the thirty or so parameters 
characteristic of the cell geometry of the virtual tissue corresponding to the element in question 
and the second vector containing its specific MRI signature. 
This dictionary will then be used to train in a supervised way a ML algorithm of the ExtraTrees 
type available in the scikit-learn toolkit [20]. 
Once trained, the ExtraTrees will be used to decode the cytoarchitecture of the cerebral cortex 
from MRI signatures that will be measured in vivo in humans on a standard clinical MRI device 
(3 T or 7 T MRI equipping the Neurospin department), and thus produce maps corresponding 
to the thirty or so characteristic parameters of individual scale cytoarchitecture that are currently 
inaccessible in vivo. 

4.5 Combustion 

Combustion provides more than 90% of the world energy and, even if renewable energies are 
developed at a high speed, combustion also keeps growing because of the growing world energy 
need. Optimizing combustion systems is therefore a critical issue and relies more and more on 
simulations which can be performed only on HPC systems because of the complexity of the 
phenomena to compute.  
The simulation of turbulent reacting flows has been a main application field for HPC over the 
last 20 years and has led to multiple transformative results as observed in multiple European, 
such as Excellerat, or US projects (ASCI for example). The field where HPC tools are the most 
advanced is probably aerospace: today, for example, many companies developing engines for 
propulsion rely on HPC codes, which are used daily by design engineers and run routinely on 
5,000 cores. This production use of HPC resources by industry has been made possible by 
aggressive academic developments and demonstrations of the corresponding codes over the 
largest machines (PRACE or Innovative and Novel Computational Impact on Theory and 
Experiment, INCITE, type) up to half-a-million cores. These computations correspond to real 
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combustion systems and include the full complexity of the physics which is required to describe 
combustion: turbulence, chemical kinetics, radiation, heat transfer to walls, acoustics. The 
corresponding codes are developed in large teams, mostly through laboratory associations. 
These codes are also used in many EU projects through Marie Curie or European Research 
Council (ERC) programs. 
The scientific difficulty associated to the simulation of turbulent reacting flow is the well-
known multi-scale multi-physics nature of the problem. This is a general statement, true for 
many fields but critical in combustion: in many combustors, the smallest chemical time scale 
is of the order of a nanosecond while the computation must last a few seconds to tackle many 
problems, such as ignition. Similarly, the spatial smallest scales can be of the order or a 
micrometer, while the whole engine may be several meters long. This is a challenge which 
cannot be fully addressed by brute force methods even today. Solving it requires both the largest 
hardware available and massive software developments. The simulation codes used for reacting 
flows are produced by large teams and incorporate multiple levels of numerical analysis and 
physics. One million lines of code is a typical order of magnitude for such tools. Obviously, 
adapting these codes to rapidly changing architectures is a difficulty, so that successful 
combustion codes are developed today by composite teams gathering physics experts but also 
an important fraction of HPC experts. This co-design structure is well known in the HPC field 
but it is critical for combustion where the models evolve very fast: for example, the need to 
predict soot and NOx emissions or the interest in hydrogen combustion (see European projects 
such as Helmeth or the ERC advanced project SCIROCCO) in the last years has led to major 
modifications in combustion codes physics and makes previous codes obsolete. Making these 
codes also compatible with new hardware at the same time is difficult.  
Another evolution of combustion codes is linked to the integration of these codes with 
simulation tools for surrounding systems. For example, in a gas turbine engine, combustion 
codes are now applied to the combustion chamber but must also be coupled to the compressor 
and the turbine simulations. In terms of HPC, this leads to problems similar to 
ocean/atmosphere coupling for climate simulations: large codes must be coupled and run 
efficiently at the same time in a strongly coupled mode. For example, Figure 31 shows a 
computation where a combustion chamber computation is coupled to the simulation of the first 
stage of the turbine (which is rotating): at each time step, the combustion code outlet must be 
coupled to the turbine inlet. This requires massive message passing and interpolations from one 
grid to another. In certain cases, the combustion and the turbine codes might actually be running 
on different machines and even different architectures (a CPU system for the combustion code 
and a GPU one for the turbine for example). 
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Figure 31 Example of coupled computation on HPC architectures: two codes are coupled to compute the 

combustion chamber on one side and the turbine on the other side (source CERFACS) 
 

 
Combustion is another fascinating field of application for investigations of the ML potential in 
the domain of partial differential equations. The Navier-Stokes equations, which control the 
motion of turbulent reacting flows, require closure terms when they are averaged. Such closure 
schemes are statistical models which can be tackled with ML techniques. This leads to a 
reformulation of LES (“Large-Eddy Simulation”) techniques for reacting flows, which offers 
great potential. This also imply new research into CPU/GPU hybrid computing, since most 
computational fluid dynamics (CFD) codes run today on CPUs while most ML tools live on 
GPUs architectures. This is another field where combustion is at the forefront of HPC, ongoing 
research is done on the Jean Zay system at IDRIS by CERFACS for large-scale LES of a slot 
jet flame coupled with a neural network-based wrinkling model with successful first co-
simulations up to 2816 CPUs and 256 GPUs (see Figure 32). 
 

 
Figure 32 Coupling of AVBP and a neural network for computing the total surface of the flame front 

(source CERFACS) 
 
 

To conclude, the European numerical combustion community is extremely strong and well 
connected to the HPC world. Multiple combustion codes are used to develop and benchmark 

Initialize 
couplings 

Create mesh Create mesh 

Locate 
meshes 

Advance 
simulation 

Predict total 
flame surface 

Temporal 
loop 

Every N 
iterations 𝑐 
|𝛻𝑐|$$$$$
|𝛻𝑐̅|

 

AVBP 
(Fortran

) 
Neural net 
(Python) CWIPI (C++) 

!̃ ∇!
∇!̅

32 32

64 64

128

128 64

64 32

3 x 3 x 3 convolution

Downsampling x2

Upsampling x2

Concatenation

Receptive field size5

14

5

32



D3.1    Roadmap of HPC applications and usages 
 

EXDCI-2 - FETHPC-800957 42 26/02/2020 

new architectures because they are identified as good tools to stress machines while also 
attracting industrial users towards HPC systems. It is very important for the EU to propose 
adequate tools to extend these collaborations: combustion codes require very high computing 
powers and also offer direct connections with industry and important societal applications in 
the energy domain. 

4.6 Chemistry and material sciences 

Chemistry and materials science will remain one of the largest users of computing, with 
industry increasingly relying on simulation to design, for example, catalysts, lubricants, 
polymers, liquid crystals, and also materials for solar cells and batteries. Electronic structure-
based methods and molecular dynamics will access systems, properties and processes of 
increased complexity, and towards extreme accuracy. These are being complemented both with 
multi-scale models and data-driven approaches using high-throughput and DL to predict 
properties of materials and accelerate discovery. This will enable researchers to fulfil the grand 
challenge of designing and manufacturing all aspects of a new material from scratch, which 
will usher in a new era of targeted manufacturing.  
As stated into the PRACE Scientific Case the identification, development, and exploitation of 
new classes of materials is also key for European industry and competitiveness. To illustrate a 
handful of examples:  

• The use of ab-initio, Born-Oppenheimer MD to understand the catalysis of petroleum 
cracking and other important reactions on transition metal surfaces (J. Matthey, BASF).  

• The use of mesoscale simulation methods in the prediction of phase diagrams of 
multicomponent surfactant and polymer mixtures heavily marketed by companies such 
as Unilever and Procter & Gamble. This will require rapid chemical potential 
calculation by particle insertion methods.  

• The prediction and modification of crystal habit by simulation, in particular attachment 
energies and entropies. This is used by major pharmaceutical companies such as Pfizer 
in the prediction of drug solubility and delivery.  

• Calculating accurate relative free energy changes as drugs are transported from solution 
to the active site of proteins, as well as their binding affinity. The relative binding 
constant of two drugs can be calculated from the free energy cycle as one drug is 
transformed into another in both environments, and with Exascale computational 
resources these methods will be able to use even more accurate models and forcefields 
to replace the current more approximate docking methods.  

• The prediction of lubrication and friction coefficients between two solid surfaces 
including ionic liquids in factory machines at extreme loads (>1 GPa), physiological 
lubrication of joints by polymers at loads of 7 MPa, and tertiary oil recovery (British 
Petroleum).  

• The growth of gold nanowire using kinetic Monte Carlo calculations combined with the 
computational fluid dynamics of spray jets (Merck solutions).  

• Mesoscale simulation of the effect of electric fields on director reorientation and 
orientational phase transitions in liquid crystal phases in the production of new flat 
screens (M. Global).  

• Simulation of polymer melt mixtures to create channel structures for use in membranes 
for osmotic water purification (Fuji Films).  

• The use of quantitative structure-activity relationship and ML techniques for the design 
of novel antimicrobial peptides for cleaning solutions (Unilever).  

• The prediction of mechanical properties of co-block polymer melts to create new and 
efficient tyre composites (MD and mesoscale dynamics) for Michelin.  
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While data has always played a pivotal role in material design and discovery, its importance as 
a major driver for innovation is increasingly appreciated, as evidenced by the many current 
efforts worldwide in material data such as the NOMAD Laboratory and MaX CoE, independent 
initiatives such as ioChemDB, and the US DoE HPC for materials initiative.  
The MaX CoE is enabling materials modeling, simulations, discovery and design at the frontiers 
of the current and future HPC, HTC, and HPDA technologies. MaX is working on scaling out 
to new pre-Exascale converged (HPC and AI) architectures a set of leading-edge European 
applications including complementary open-source codes: Quantum ESPRESSO, SIESTA, 
YAMBO, FLEUR, CP2k, and BigDFT. It contributes to the development of AIIDA: a Python-
based materials informatics cloud based framework to manage, store, share, and disseminate 
the workload of high-throughput computational efforts, while providing an ecosystem for 
materials simulations where codes are automatically optimized on the relevant hardware 
platforms, and complex scientific end-to-end workflows involving different codes and datasets 
can be seamlessly implemented and shared. 
The NOMAD CoE develops materials encyclopedia and big data analytics tools for materials 
science and engineering. This will be reinforced by advanced graphics and animation tools. 
New ML technologies are providing substantial added value by enabling the extraction of more 
information from these new data projects and from existing databases – the community is 
increasingly generating knowledge directly from the databases. Furthermore, the 
transferability of different concepts through suitable metadata enhances (i) the identification 
of materials and compounds with desired properties and (ii) the transferability and conversion 
of the gained molecular understanding into mesoscopic models and ultimately devices, 
following the concepts developed in the European Materials Modelling Council and their 
“materials MOdelling DAta”. The improvement of codes and their integration plays an 
important role in this progress as has been recognized through the Virtual Materials Market 
Place, an initiative that demonstrates materials research is predictive enough for wide 
industrial application, and that there is industrial demand for materials design using both HPC 
and AI. 
The next generation of researchers will need to master a wide range of methodologies, ranging 
from identification of effective potentials starting from ab initio studies to the behavior and 
response of systems with complex composition over long length and time scales. A concerted 
effort is needed to educate a new generation of computational material scientists and direct 
resources towards software development in addition to the ongoing investment in 
computational infrastructure. 

4.7 Social Sciences 

Social sciences (or Humanities) are very wide with multiple definitions depending on the 
countries. By example, stating in Wikipedia “Social science is the branch of science devoted to 
the study of human societies and the relationships among individuals within those societies. 
The term was formerly used to refer to the field of sociology, the original ‘science of society’, 
established in the 19th century. In addition to sociology, it now encompasses a wide array 
of academic disciplines, including anthropology, archaeology, architecture, economics, human 
geography, linguistics, media studies, musicology, political science, psychology, and social 
history”. In recent years social sciences are also encompassing new domains like 
finance/insurance, risk management, … and have been more and more mixed with others 
traditional sciences leading for example to neurosciences where both psychology and biology 
allow the study of perception, cognition, attention, emotion, intelligence, subjective 
experiences, motivation, brain functioning, and personality. 
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Like “traditional or hard sciences”, social sciences have in common to deal with a recent 
explosion of the amount of data to process, cross and correlate due to the availability of more 
and more of heterogeneous data sources (only think about social media, see Figure 33), the 
growing number legal and ethics frameworks around the collection and the handling of data 
and the associated social and economic stakes to process, value and expose data.  
 

 
Figure 33 Yearly edition for 2019 of the One Internet Minute (source [21]) 

 
 

In order to ingest and process such amount of data, HPC/HTC became during the 1990s 
mandatory tools paving the path to HPDA in order to browse huge datasets and databases.  Since 
few years AI, or more precisely ML, are now feasible due to (i) the existence of a large amount 
of data that represents a high-potential source of valuable insights and (ii) advances in the 
underlying hardware and software ecosystem, which provide the computational performance 
to train the models associated to these ML systems. 
As a first example of the HPC for social sciences at the European level, the GSS CoE, working 
on the development of an HPC-based framework based on DSL to generate customized 
synthetic populations for GSS applications, worked on three concrete pilot studies:  

• the modeling of smoking habits and tobacco epidemics to create a synthetic population 
by integrating large and heterogeneous data sources that will describe the prevalence of 
health habits in Europe and explore their expected trends. 
This goal will be achieved by integrating high-resolution demographic information, 
official population statistics, and dynamic models of social contagion. Taking advantage 
of HPC and developing novel algorithms to simulate the dynamics of the tobacco 
epidemic, the resulting system will be a powerful tool in the hands of policymakers to 
evaluate the impact of health programs and to increase their efficiency; 

• evolution of the global car fleet and its emissions taking into account mobility 
factors/profile of people, congestion of infrastructures, pollution, noise, … and perform 
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optimization and uncertainties quantification studies on in order to answer to decision 
makers question like “What are possible effects of different decisions on the deployment 
of charging infrastructure on the uptake of electric vehicles in Germany up to 2035?”; 

• and the two-way relation between transport infrastructure decisions (and associated 
positive impacts such public-transports development and negative as congestion and 
pollution) and price mechanisms, particularly concerning real-estate applied to the Paris 
area. 

This work has been renewed and extended (in terms of partners involved) recently into the 
Hidalgo CoE developing novel methods, algorithms and software for HPC and HPDA to 
accurately model and simulate the complex processes, which arise in connection 
with major global challenges including three new pilots in: 

• studying impacts of migration of people using scalable agent-based modeling taking 
into account precipitation/climate data, conflicts in the world, telecommunication data, 
… to enable simulations on a large scale to accurately forecast where displaced people 
coming from various conflict regions of the world, will eventually arrive to find safety; 

• social networks, understanding and modeling the significant influence on social and 
economic behavior of their use, identify false/malicious messages, which intend to 
change the behavior of a substantial number of users, develop countermeasures on the 
algorithmic level in order to prevent the spread of such false messages on a large scale 
and finally develop a highly scalable simulation framework for such stochastic 
processes in real-world networks, in order to be able to analyze and predict the impact 
of these processes on the society; 

• and urban air pollution pilot by developing an HPC framework for simulating the air 
flow in cities by taking into account real 3D geographical information of the city, 
applying highly accurate CFD simulation on a highly resolved mesh (1-2 m resolution 
at street level) and using weather forecasts and reanalysis data as boundary conditions.  

In the field of scalable agent-based modeling research groups like at Barcelona Supercomputing 
Center, Spain [22], work on exploring new HPC solutions for social modeling such as data 
storage, load balancing, optimization of fine-grain simulations, and the use of DSL, besides 
developing a generic framework for simulation agent-based social dynamics to study the 
implications of this methodology in application areas such as tuberculosis epidemics or 
territorial urban planning (see Figure 34).  
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Figure 34 Global framework of scalable social sciences framework for pandemic spreading (courtesy of 

Barcelona Supercomputing Center) 
 
 

In the field of enabling the complex analysis of large-scale digital collections a British team 
worked to scope out how the best HPC facilities can be used to facilitate the needs of researchers 
in the humanities. They analyzed, using HPC-enabled data-processing frameworks, more than 
60,000 digitized books covering fiction and non-fiction publications from the 17th, 18th, and 
19th centuries (representing close to 224 TB of compressed ALTO XML files), identified major 
barriers that humanities researchers are facing (fragmentation of communities, resources and 
tools, lack of interoperability, complexity and incompleteness of heterogeneous cultural 
heritage datasets or lack of technical skills) and worked on large-scale analysis of two case 
studies:  

• the history of medicine in the UK, focusing on exploring issues around the spread of 
diseases, and the research questions were how does the occurrence of diseases (like 
cholera, whooping cough, consumption, and measles) in published literature compare 
to known epidemics in the 19th century; 

• the history of images, tracking the spread of new images thanks to the development of 
new printing technologies between 1750 and 1850. This enabled the team to observe 
the dominance of full page and very small images (<15% of the page) between the 
1750s and 1810s, after which time, driven by novel deployment of woodcuts and 
lithographs in books, the range of figure sizes diversified. 

In the field of analysis of social media, a research team in Grenoble (France) used tier-2 and 
recently tier-1 HPC facilities to analyze in almost real time trends and behavior of potential 
electors just before the vote. The team analyzed using k-means methods the twitter activity 
(tweets, retweets, use of specific hashtags like #EE2014 or #Europeennes2014) before the 2014 
European elections in order to form group of users who tended to do the same actions during 
the campaign. 
And finally, at the European level again, the DARIAH-EU project (aiming to deploy thematic 
services for social sciences), EUDAT, and EGI collaborated to propose the DARIAH Science 
Gateway over the EOSC-Hub initiative. The DARIAH gateway is a platform that provides 
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access to various digital applications and services for the arts & humanities researchers. The 
applications made available via the DARIAH gateway are: 

• simple Semantic Search Engine: a semantic search engine which allows researchers to 
search for content in more than 100 languages within the Sci-GaIa e-infrastructure 
knowledge base, one of the largest existing databases; 

• parallel Semantic Search Engine: a parallelized version of the Semantic Search Engine 
that enables simultaneously search across multiple platforms; 

• DBO@Cloud: a cloud-based repository made of a 100-years old collection of Bavarian 
dialects. The datasets are provided by the Austrian Academy of Science. 

4.8 Engineering and industrial applications  

Engineering applications will be among the first exploiting Exascale, not only in academia but 
also industry. In fact, the industrial engineering field is the field with the highest Exascale 
potential. The European engineering industry consists of 130,000 companies of diverse size. 
Overall, these companies employ over 10.3 million people, with high levels of qualifications 
and skills. Together they generate an annual output of around 1840 billion Euros and about 1/3 
of all exports from the EU. The European engineering industry plays a key role in realizing the 
goal of increasing the industrial production value above 20% of the gross domestic product 
(GDP) by 2025. To achieve this aim and meet the challenges of the fourth wave of 
industrialization, it is essential to support European engineering companies in their use of HPC 
and HPDA, thus increasing European industrial competitiveness. As massively parallel HPC 
systems have developed over the past decade, the engineering sector has come to face quite 
specific modeling and simulation challenges. 
The CoE EXCELLERAT is working on a set of key European reference applications (namely 
Nek5000, Alya, AVBP, Fluidity, FEniCS, Flucs), which were selected as key representatives 
of challenges faced by broad parts of the engineering domain (especially towards Exascale). 
These applications cover three main topics of engineering: automotive, combustion, and 
aeronautics. Within the frame of the project, EXCELLERAT (see Figure 35) will prove the 
applicability of the results to other HPC engineering applications than the six chosen. Work on 
these applications will start from the pre-analysis and then enter a phase of further evolution, 
by applying mechanisms for maintenance, optimization and scaling where needed and 
performing tests and developments on current and future architectures, namely the Exascale 
Demonstrators, Pre-Exascale and Exascale machines, which will be available in the frame of 
EuroHPC and beyond. This also includes the validation of codes and their quality assurance, 
always in close alignment with the respective stakeholders, coupled to a focus on co-design 
with hardware and software vendors, to get the maximum performance of codes. A focus will 
be also to enable new engineering design capabilities on the basis of data analytics for improved 
product design.  
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Figure 35 Base pillars of the CoE EXCELLERAT (source EXCELLERAT) 

 
 
EXCELLERAT will enable enhanced engineering applications and support the community. 
The efficient use of HPC resources requires skillful personnel that is not only trained in how to 
efficiently use certain applications, but also have a good understanding of HPC hardware and 
technologies. Furthermore, the complexity involved in HPC requires great care in how the 
workflows to solve a given problem are set up, from choosing the right application and 
hardware mix to solving the questions of how and where to store and potentially visualize the 
resulting data. There is also a great need of transferring academic results to industry in an 
efficient and timely way to ensure leadership in the field. EXCELLERAT provides a 
comprehensive overview of HPC training course programs in the HPC centers comprising 
EXCELLERAT. 
In Europe, a lot of companies (mainly large groups but also sometimes Small and Medium 
Enterprises, SMEs) are using HPC in their daily business and some of them are even 
exhibiting Exacale roadmaps.  
In the field of Oil & Gas companies like TOTAL, BP, Shell, or ENI as well as contractors like 
Schlumberger or CGG Veritas are investing in large-scale own HPC facilities for high 
resolution seismic processing (and on a less extend reservoir simulation). TOTAL just deployed 
Pangea III an IBM OpenPOWER hybrid system of 26 PetaFlop/s and ENI just announced a 
major investment on an DELL EMC hybrid HPC system of 52 PetaFlop/s called HPC5, 
comprised of 1820 compute nodes, each with four NVIDIA V100 GPUs. 
This system will be used for seismic processing (reverse time migration as well as first attempts 
of full wave equations modeling) as well as next generation reservoir modeling (4D seismic 
coupled to reservoir modeling, uncertainties quantification, multi-scale modeling from the pore 
to the reservoir scale) using a new software called ECHELON able to scale up to thousands of 
GPUs and used in capacity mode for uncertainty quantification of models, in order to optimize 
the production of oil fields during their lifetime. 
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Figure 36 Seismic processing of TOTAL (courtesy of H. Calandra) 

as published inside previous EXDCI document 
 
 
In Oil & Gas, this will go over domains such as seismic interpretation, real time analysis of data 
from wells in production, bio-stratigraphic analysis, analysis of satellite images in case of oil 
leakage, and forecast of production, to well planning before production into existing fields, 
smart forecast of production, anticipation of failures, … from upstream to downstream. 
In consequence, the rise of new hardware architectures providing AI or neuromorphic 
computing will provide a promising short-term perspective, while more mid-term technologies 
such as quantum computing are already on the radar of Oil & Gas companies. The acceleration 
of AI problems through quantum computing will be one of the first fields of application but 
porting numerical methods such as fast Fourier transformations (FFTs), Darcy’s laws for flow 
modeling through a porous medium (used in basin and reservoir modeling) will be a real 
challenge. This will raise in a few years the question about rewriting HPC applications to be 
scalable beyond 300+ PetaFlop/s sustained (if possible) or starting now to think about using 
such applications in the future with quantum computing.  
Beyond traditional computing some companies like TOTAL started to invest in quantum 
computing using ATOS quantum learning machine (QLM) simulators on top of existing 
quantum hardware in order to assess or develop new algorithms that could be used so for 
molecular/material chemistry simulation (developing new catalysis process, lubricants or next 
gen batteries) or optimization of fleets (tankers, electric cars, …) or energy grids and on a more 
long-term seismic processing and CFD. 
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Figure 37 Early use of quantum computing at TOTAL (courtesy of H. Calandra) 
 
 
In the field of energy, the objectives of using large-scale HPC (and now HPC and AI facilities) 
are multiple: first improvement of safety and efficiency of the facilities (especially nuclear 
plants), and second optimization of maintenance operation and life span. In this field, physical 
experimentation, for example with nuclear plants, can be not only impractical but also unsafe.  
Computer simulation, in both the design and operational stages, is therefore indispensable. 
In the thermal hydraulics, the improvement of efficiency may typically involve mainly steady 
CFD calculations on complex geometries, while improvement and verification of safety may 
involve long transient calculations on slightly less complex geometries, and less well-resolved 
meshes. 
This will require HPC for the study of flow-induced loads (to minimize vibration and wear 
through fretting in components such as fuel assemblies), flow-induced deformation and de-
nucleate boiling avoidance in pressure water reactor cores, and the use of detailed simulations 
designed to verify and increase safety. 
In the field of 3D unsteady CFD simulations, EDF R&D and IMFT optimized and scale out the 
NETPTUNE_CFD code applied to the simulation of fluidized-bed reactors in which 
combustion takes place at relatively low temperature have the main advantage to minimize 
combustion pollutants. Such reactors are used in many industrial applications, especially in 
solid treatment applications where energy may be supplied by direct combustion of fossil fuels 
inside the bed itself. Natural gas is the least polluting fossil fuel and, when burnt at low 
temperatures, it involves lower pollutant emissions, especially NO and NO2. Understanding 
and mastered natural gas combustion process in fluidized beds is thus of great interest with 
respect to environmental issues.  
They are performing large scale multi-phasic simulations on up to eight billion cells industrial 
cases (a first ever in that field) on up to 61,000 cores of the Jean Zay system at IDRIS after 
initial successful proof of concept performed on CALMIP (Toulouse) regional facilities (see 
Figure 38). 
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Figure 38 1 billion cells multiphasic industrial scale fluidized bed reactor CFD simulation (courtesy of H. 

Néau) 
 
 

Beyond HPC, energy companies like EDF are also starting to look at quantum computing 
especially in the field of material chemistry. For integrate higher volume of renewables EDF 
UK plans to install large batteries on national scale power grids. But optimizing the investment 
and the life time operation of these storage systems is a problem whose complexity exceeds the 
capabilities of classical computing (see Figure 39).  
 

 
Figure 39 First quantum experiments of EDF R&D UK for optimal battery operations (courtesy of S. 

Tanguy) 
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5 Applications and co-design 

The word “co-design” can be understood in different ways. Quite often it is used by vendors to 
refer to the simultaneous development of hardware (processors, memories, networks, 
architectures, …) and software (compilers, libraries, middleware, …). It is also used to refer to 
synergetic developments of compute infrastructure and scientific or industrial applications. We 
shall refer here to this later interpretation. The way applications will be able, from the 
computing point of view, to efficiently face their challenges will depend for a significant part 
upon the hardware and middleware they will be able to use in the coming years. As hardware 
and middleware will experience a number of important changes, co-design between 
applications and computing environment (machines and tools) is seen in many countries as a 
necessary and fruitful step. There are basically two ways to organize co-design: either by 
adapting the computing environment to the requested features of the main building bricks of a 
number of applications; or by constructing applications, or bricks necessary to a number of 
them, adapted to the computing environment. 
The first approach is not largely developed. There are very few initiatives of this type, the most 
recent one being developed in Japan, to plan for the post-Riken computer Fugaku. The design 
of the system, processors and interconnect, is influenced by the applications needs, and is seen 
as a key to make it efficient and high-performance. More precisely nine target applications are 
considered, coming from very different fields of activity, i.e., personalized medicine, drug 
discovery, fundamental laws of the universe, innovative design and production processes, high-
performance materials, innovative and clean energy systems, energy production, conversion 
and storage, meteorology and climatology, and earthquakes and tsunamis. Choices for the 
Fugaku system are then made so as to increase as much as possible the performance of these 
various applications. With respect to the preceding K-computer system (appeared in the second 
part of 2011) the gain in performance for eight of the nine target applications ranges from 
25 to 125, depending on the particular application being considered. Such an increase in 
performance has to be compared with the rate of increase of the computer performance 
described above, i.e. a factor of (only) five over the last five years, extrapolating to a factor of 
25 over ten years. This shows that co-designing the compute system with respect to the 
applications performance brings clearly a number of benefits. The second option for co-design 
is the most commonly used. In this approach, key elements of applications are identified (under 
such names as building bricks, kernels, dwarfs, mini-apps, motifs, …) and these key elements 
are then optimized on given compute infrastructures. The philosophy is that refactoring large 
established codes is a major effort, and that sharing software pieces between applications avoids 
duplication efforts. Differently from the Japanese approach, it seems then that the hardware 
development is first, and that the applications motifs are then optimized on this hardware. 
Among such co-design initiatives one can refer to the one developed under the actual Exascale 
computing project (ECP) initiative in the US.  
ECP’s focus is on delivering, not later than 2023, “capable” Exascale systems, and meaning 
that hardware, software, applications, platforms and facilities are co-designed to deliver 
sustained performance. It is aimed at solving science problems 50 times faster as compared to 
actual Petascale scale systems. 24 different applications have been selected, from which 
different motifs are extracted, and five co-design centers have been established to target 
crosscutting algorithmic methods that capture the most common patterns of computation and 
communication for future efficient Exascale applications. These co-design centers address such 
issues as the growing disparity between simulation needs and I/O rates that makes performing 
offline analysis infeasible; particle dynamics in a variety of contexts (e.g. MD, hydrodynamics, 
particle-in-cell …), solving sparse matrices and graph operations, new block-structured 
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adaptive mesh refinement framework, development of finite element discretization libraries, … 
It has already been recognized that optimizing on accelerator processors is the main difficulty, 
requiring that the design of the code is done with awareness of this type of hardware. ECP sees 
it to be far more important than choosing the “right” programming model.  

Co-design approach as such is not as much developed in Europe. There are a number of 
initiatives in different countries, but no real common initiative at the European scale to share 
developments. The ten CoEs, nine of them being specialized in a given range of applications, 
are exchanging their views and needs under the newly created concerted support action called 
“FocusCoE”. It indeed appears that a large number of issues are shared between them, e.g. load 
balancing, programming models for Exascale, performance, portability of codes, 
standardization of programming models, dynamic (task) scheduling, scalable solvers, data flow, 
in-situ data analysis and I/O, ensemble runs, implementation of co-design and technology 
integration, post-processing on the fly, data-focused workflows, use of large width vector units, 
use of heterogeneous architectures and strong memory hierarchy, visualization and data 
processing/analysis, workflows combining HPC simulations with associated data management 
and analytics capabilities. They have developed expertise in a number of these fields, but, on 
the one hand, it does not seem that adequate mechanisms are in place to support the efficient 
sharing of this expertise between applications and to save from duplication efforts. On the other 
hand, the co-design efforts with application developers would also need to specifically address 
the issues concerned with the adaptation to new, converged Exascale architectures, as this is 
seen as a crucial and necessary step for remodeled application codes in the coming years. 
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6 The main messages 

It may be useful to recap here, in a few words, some of the main messages which are developed 
in the above chapters.  
For most of the application domains the roadmaps are now at a turning point. There is always 
a crucial need for simulating more precisely the phenomena at stake, e.g. either by increasing 
the resolution, or by including more detailed physics in the model, or by running more instances 
of the models to estimate uncertainties. Exascale simulations are obviously on the roadmap to 
many developments. But there is also pressing opportunities to interface physics-driven 
modeling and simulations with complementary information produced by ML (DL), taking 
advantage of the ever-increasing amounts of available data, coming either from observations 
or from more detailed, generally off-line simulations. The development of the corresponding 
hybrid approaches, between “traditional” HPC and ML, cover many different aspects: 

• increasing importance of hybrid-modeling approaches, either by using ML techniques 
to solve more efficiently parts of HPC models (parameterization of subgrid scale 
phenomena, solvers and preconditioners, …), or by developing model-based (physics-
based) ML; 

• need for more-and-more resource infrastructures allowing at the same time efficient 
numerical simulation of physical phenomena and treatment of massive data, calling in 
turn for resources where different types of processors are associated, e.g. CPUs for 
HPC and GPUs or other types of accelerators for converged HPC / ML workloads; 

• and, last but not least, support hybrid training so that application developer teams can 
address all aspects of these new methods.  

What has just been said concerning the evolution of resource infrastructures must also be 
combined with the fact that HPC facilities, either as concentrated centers or of cloud-types, are 
more and more integrated inside a global cyber-infrastructure, from places where the data are 
being produced to the place where they are used, stored and archived. 
Although this is a long-standing issue, a bit out-of-scope of the present report, such improved 
simulation methods will require more detailed validation, calling in term for sophisticated post-
processing in relation with massive validation data.  
Another message would concern the co-design process between hardware and software 
developers on the one hand, and application developers on the other hand. Such co-design 
appears to be less developed within Europe as compared with the USA and, even more, with 
Japan. Addressing and supporting co-design issues in this way would largely facilitate efficient 
use of Exascale converged facilities for a number of applications. 
 


