

BDEC2 BIG DATA AND EXTREME-SCALE COMPUTING 2

BDEC: Past, Present and Future

Mark Asch Technical Meeting EXDCI-2 December 2nd-3rd, 2019

What is BDEC?

- An international "think-tank" started by HPC people (circa 2009) to address exascale convergence of compute and (big) data.
- We meet regularly (2-3 times per year) in intensive 3-day workshops.
- We prepare **position papers** and roadmaps that are submitted to major national funding agencies and that guide investment strategies.
- Major reports published:
 - IESP Roadmap, IJHPCA, 25(1), 2011.
 - Pathways to Convergence, IJHPCA, 32(4), 2018.
- Follow us: <u>www.exascale.org/bdec</u>

What is BDEC-2?

- 2. BDEC2 Bloomington Indiana, Applications Focus, November 28-30, 2018
 - BDEC2 Kobe, Japan, Platforms, February 19-21, 2019

BDEC2 Poznan, Poland, Demonstrator Projects, May 14-16, 2019

5. BDEC2 San Diego, AI/CI Convergence, October 15-17, 2019

BDEC2 Porto, Portugal, Application defined workflows, March 24-26, 2020

th BoF's at SC and ISC meetings

4.

BIG DATA AND

EXTREME-SCA

COMPUTING

In the beginning...

- Peta- to Exascale transition
- Big Data and IoT (the end of HPC?)
- Convergence of HPC and Big Data, but what about logistics?
- TransContinuum e-infrastructures:
 - Edge-to-edge, from IoT and Big Instruments through to the Centre (cloud, HPC)
 - Data everywhere
 - Compute near the data
 - Workflows
 - Al everywhere... the new (unavoidable) enabler!

So, what is the Digital Continuum?

Building fluid cyberinfrastructure

Courtesy: Dan Reed

So, what is the Digital Continuum?

HPC in the loop

Enabling Intelligent data processing at the edge:

- Fog computing
- Edge computing
- Stream analytics

Transforming data into information as soon as possible

Collaboration between edge devices and the HPC/cloud ensuring:

- Data security and Privacy
- Lower bandwidth
- Better use of HPC/Cloud
- \rightarrow creating a continuous flow

Courtesy: ETP4HPC

BIG DATA AND

EXTREME-SCA

COMPUTING

Challenge: Programming The Computing Continuum

Size	Nano	Micro	Milli	Server	Fog	Campus	Facility
Example	ΙοΤ	Smart Device	Sage Node	Linux Box	Co-located Blades	1000-node cluster	Datacenter
Memory	0.5K	256K	8GB	32GB	256G	32ТВ	16PB
Network	BLE	WiFi/LTE	WiFi/LTE	1 GigE	10GigE	40GigE	N*100GigE
Cost	\$5	\$30	\$600	\$3K	\$50K	\$2M	\$1000M

Count = 10⁹ Size = 10¹

IoT/Edge

Count = 10¹ Size = 10⁹

HPC/Cloud

How will we write programs?

BDEC2 Demonstrators

- **Definition**: a *proof-of-concept* platform designed to demonstrate some **common** capabilities that some of our BDEC2 applications and application communities need.
- Objective: produce a working version of an international, federated, continuum-spanning demonstrator that can be cooperatively operated and managed and that engages stakeholders at all levels.
- Why? Existing cyberinfrastructure was not designed to adequately deal with edge to cloud/HPC workflows, especially not extremely data intensive ones.
- How? A series of international *WORKshops*, bringing together computer scientists, application scientists, big data, IoT, AI and other stakeholders who are focused on achieving this goal.
- Follow us: <u>www.exascale.org/bdec</u>

What are the Challenges?

- There is an end-to-end problem (spanning the continuum) - from AI@Edge to HPC in the Cloud.
- There is a software stack problem (HPC troglodytes).
- There is a resource allocation problem (on demand, shared infrastructure).
- There is a data movement and logistics problem (both directions).
- Robustness, security, sustainability and reliability of large, interlinked, composed infrastructures.
- Al is everywhere, and new infrastructures must support monitoring and control; infrastructure learns (not just the app).

BIG DATA AND TREME-SC COMPUT

What is a good Demonstrator?

- Could evolve to support multiple application domains.
- Reveals programming model from edge to cloud.
- Shows global workflow (data, resources, users, etc.)
- Architecture is reusable, across multiple scales.
- Could evolve to run across several different composed infrastructures.

What are the potential use-cases?

• Big Instruments:

- Radio telescopes LOFAR, SKA.
- High energy physics LHC .
- Satellite data Copernicus, SWOT, HIMAWARI, ...
- Climate, earth sciences, oceanography.

• IoT-like:

- Personalized medicine.
- Autonomous vehicles.
- Predictive maintenance.
- Precision agriculture.

Digital Twins...

What are the next steps?

• Two demonstrators to be developed:

- Global Data Logistics Network.
- Learning everywhere.
- Multi-lateral funding:
 - Set up an international funding scheme for the above 2 demonstrators.
 - Solicit funding agencies.
 - Encourage private sector involvement (GAFAM, ABC, etc.).
- Strategic Research Agenda for EU (coordinated calls):
 - ETP4HPC
 - BDVA
 - IOTI
 - 5G, ECSO, Robotics

Al in the Continuum

- 3 categories:
 - Al for Science applications
 - AI for EI piloting e-infrastructure
 - El for AI making AI efficient
- Al for Science:
 - Steering of simulations
 - Embedding ML in simulation methods
 - Customized computational kernels
 - Tuning applications parameters
 - Generative models to compare with simulation
 - Student (AI) Teacher (Sim) models -> learned functions
 - Guided search through parameter spaces
 - Hybrid architectures HPC + Neuromorphic

Al in the Continuum

• Al for El:

- Manage AI expectations (users in the loop)
- Improve system operation: cost, reliability, security
- Improve app and workflow performance
- Closed-loop systems
- Test-beds
- El for Al
 - Programming: tools to be used across the continuum, performance in the continuum context
 - Distributed service composition: data placement, accomplish complex AI workflows in distributed, unreliable environment
 - Data: retain provenance, enforce access obligations, purpose-driven storage
 - Communications and Protocols: enable communication in this "more Internet than the Internet" environment
 - Authentication and Authorization : establish a chain of trust

Next Steps for BDEC

- Porto Workshop:
 - March 24th-26th 2020.
 - Organised by EXDCI-2, WP5.
 - Theme: Application Defined Workflows.
 - Opening session with EuroHPC
- Community Report:
 - Messages to be passed to stakeholders in ALL regions.
 - Distilled from Bloomington, Kobe, Poznan, San Diego, Porto and Asia workshops.
 - Will be presented at SC'20.
- And after that????

Thank YOU

• Contact:

- mark.asch@u-picardie.fr
- References:
 - <u>www.exascale.org/bdec</u>
 - Asch et al. Pathways to Convergence. Int J. HPC Appl. 32(4), 2018.

