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Introduction

- HPC walls
»  Frequency
* Memory
+ Scaling
» Research ecosystem in Europe
+ Photonics : photonics21
- Electronics: ECSEL JU AENEAS
« 3 RTO : CEA/LETI, Fraunhofer, IMEC

« Discussion around workshops
* Nov 2018

- Nov 2019 .
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» Active discussions on

- What are the most relevant technologies and/or new architectures for
future HPC/edge systems;

- How to accelerate the uptake of these technologies/architectures;

- How Europe can develop a value chain for these new approaches and get
a strong position.

» As results

- Set a list of promising technologies/architectures relevant for future
HPC/edge systems and meaningful to develop in Europe;

- Some indications of what will be required for them to emerge;
- Be in position to write short but credible “science fiction success story”

for some of these high potential technologies. o« 07 .
€xdC!
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We need to reinvent

New material

Supraconducing

Silicon
photonics
Analog
computing

New architecture

New

representation of

Information e.dCl
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- Trade-off precision/cost of compute ie precision 64b/32b/16b/8b
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- Different data representation ie spikes 9
® 0 0) l i;ig[ l
TN 2F||||||HI
_ R URALY o
- Qbits tfr-) V2
® ! —1)
Classical Bit Qubit
- Analog coding of information N \ /\/\ —
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New architectures

* Processor in memory

- Data flow

~ Ultra-dense

B\ vertical connections
Computing logic

* Neuromorphic

Tensor Processing Unit (TPU)

- 30-80x TOPS/watt vs.
2015 CPUs and GPUs.

- 8 GiB DRAM.

« Graph computing

- 8-bit fixed point.

- 256x256 MAC unit.
. . PY ® - Support for data
«  Simulated anneal ) iy i

I u n n I n S5k o multiply. activation. Figare 3. TPU Printed Circuit Board, Tt can be inserted in the slot
e éq’ ;g? * pooling. and for an SATA disk in a server, but the card uses PCle Gen3 x16.
Jote S normalization.
¢ oa or oF
= N
w3 %

34 —3

*  Quantum annealing
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*  Quantum computing
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NVM

Silicon photonics

Memristive technologies

New materials

Analog computing
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Silicon process

Al oriented and neuromorphic architectures
New technologies and PIM

Silicon photonics and analog computing

Transversal challenges, wrap up and next steps

EXDCI-2 General Presentation
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leti

sl NanoSheets will be in production for 3nm node

Samsung Announces 3nm GAA MBCFET PDK,

Planar FET FinFET GAAFET MBCFET™

(Nanowire) (Nanosheet)

Samsung, May 2019
System Test, Launch_ /\

& Operations TRL9

System/Subsystem TRLS
Development 1T —_

* Relevance: low-power 3nm transistor

Technology
Demonstration

« Timeline: already exist
* Value chain: not in Europe toda

Technology
Development

Research to Prove
Feasibility

Basic Technology
Research

LETI, Dec. 2006

Leti confidential 2019 - DO NOT DISTRIBUTE | 9



leti

il TWO 3D VLSI complementary approaches @ LETI

3D
Integration
scheme

3D Parallel )

Partitioning
granularity

Interconnect pitch
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leti
TAKE AWAY MESSAGES Compute

CZa tech

° A major evolution of High Performance processor architecture

required to cope with data deluge and energy efficiency

e 3D technologies to provide heterogeneous integration
* Many available products: HBM, 2.5D interposers

* Chiplet partitioning & Active Interposer

* More & more WW interest
* CHIPLET: enabler for Yield, cost control, heterogenity, Genericity, Specialisation
* ACTIVE interposer: enabler for Smart functions Interconnect + Power Management +

SoC infrastructure

From IP provider ...
... to chiplet provider !

Terabit/s/mm2

* Proof of Concept achieved ‘
achievable

* 96 core demonstrator

* FDsOI28nm EeNnergy efficient chiplet + 6snm Smairt interposer
* Scalable concept

IntAct performances to be published at ISSCC .




4B ON-GOING NEXT STEPS

Cea tech

* D2W direct hybrid bonding

* Reduced chip-to-chip pitch : 3-5um foreseen
* Reduced chiplet-to-chiplet gap
* Better thermal coupling & reliability

. . . P. Metzger & al, Minapad 2019
°* Towards ultimate pitch thanks to 3D Sequential A Jouve & al, 3DIC 2019

* Coolcube™ CEA concept
* Combination of sequential / parallel techologies for the best trade-off
performances / cost

* Partitionning & CAD aspects

* Co-design between chiplet < interposer < package mandatory
* Assembly Design Kit + more CAD automation is required

°* The next Smart Interposer ?

* Photonic Interposer !!! - Hoaterconial, ¢
* Convergence of 3D & Photonics

XSl tool, Mentor Graphics

ﬁoﬁm«: ntery 7
avégmde mncronngs heaters, photodiodes

Y. Thonnart & al.
ISSCC’2018
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OPTICAL COMMUNICATION ON INTERPOSERS

Multiprocessor subsystem on large-scale silicon interposer

2

» Die assembly on interposer * Optical NoC topology

* Fiber coupling » Generic E/O chiplet for

communication
* TSV & microbump 10s

* Routing, flow-control & arbitration

subsystem e
integration

* Circuit-switched routing * Thermal dissipation

* TX/Rx electro-optical drivers

circuit design

* Mechanical stress

Architecture &

* Optical 10 « Autonomous thermal control

Silicon photonic §

» Dense integration

Large scale circuit §

* Integration in computing fabric

|13



PhoxTroT: Silicon Photonic Interposer

B The objective is to develop an underlying technology to enable next generation
photonics to overcome these challenges and leverage low-latency and high-bandwidth
communication.

Photonic photonic
Interposer components

2 A 5 A0 0 0 8 80 0 0 2 A0SR P AL B E A a0

glass
substrate

photonic interposer

e
T

LS
_— o ¢ bﬂ

photonic interposer

glass substrate

Source: www.PhoxTroT.eu

Tolga Tekin, SIIT

14 New technological paths for high performance chips targeting HPC and edge, ﬁ Fraun hofer

© Eraunhofer 1ZM EXDCI Workshop, Brussels, 05.-06.11.2019 ZM
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INTELLIGENT HARDWARE!?
FROM DEEP NEURAL NETWORKS

TO NEUROMORPHIC

Atrtificial Intelligence

- MACHINE LEARNING

Deep Boftzmann Machine (DBM)
Deep Belief Networks (DBN) |
—E | Deep Learning
D \
Stacked Auto-Encoders /

Convolutional Neural Network (CNN)
e ——— \
Random Forest

Random Forest
Gradient Boosting Machines (GBM) |
Boosting |

Bootstrapped Aggregation (Bagging) | Ensemble

AdaBoost

Stacked Generalization (Blending) /| N
Gradient Boosted Regression Trees (GBRT) / A

Radial Basis Function Nework (RBFN)

Perceptron |
~|_Neural Networks
Back-Propagation

Hopfield Nework / ine Learning Algoritl
Ridge Regression .
Least Absolute Shrinkage and Selection Operator (LASSO) |

1 tzation_/
\ Regularization _
Elastic Net

Least Angle Regression (LARS) /
Cubist
One Rule (OneR) |

~|_Rule System /.
Zero Rule (ZeroR) _——

/

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) )

Linear Regression
Ordinary Least Squares Regression (OLSR) |

~ /
Output Stepuise Regression | /
Regression /
Multivariate Adaptive Regression Splines (MARS)

Locally Estimated Scatterplot Smoothing (LOESS) |

Logistic Regression

\

Naive Bayes

[ Averaged Oy Estimators (AODE)

Bayesian Belief Network (BBN)
Bayesian J——
V; Gaussian Naive Bayes
/ |._Multinomial Naive Bayes

\_ Bayesian Network (EN)

Classification and Regression Tree (CART)
_herative Dichotomiser 3 (D3)
[ cas
"o

/

Decision Tree }————
Chi-squared Automatic Interaction Detection (CHAID)

| Decision Stump
|\__Conditional Decision Trees
ms

Principal Component Analysis (PCA)
[ Partial Least Squares Regression (PLSR
|/ sammon Mapping
/_muludimensional scaling (MDS)

| Projection Pursuit

\ " Principal Component Regression (PCR)
\\__ Dimensionality Reduction f———— ————————
Partial Least squares Discriminant Analysis
. Mixture Discriminant Analysis (MDA)
|\ Quadratic Discriminant Analysis QDAY
:\ Regularized Discriminant Analysis (RDA)
|\__Flexible Discriminant Analysis (FDA)
"‘\ Linear Discriminant Analysis (LDA)
k-Nearest Neighbour (kNN)
[ Learning Vector Quantization (LVQ)

\ Instance Based |-
|\ \_seli-Organizing Map (SOM)

!_Locally Weighted Learning (LWL
k-Means

k-Medians

\_Clustering /-
4 Expectation Maximization

\_ Hierarchical Clustering

Machine Learning

Brain-Inspired

Tuning model parameters based on available data =
"learning* without explicit programming

Model Parameters

Neural
Networks

. Pattern Recognition
. Feature Extraction

[ ]
V. Sze, et al. “Efficient processing of deep neural networks:

A Tutorial and Survey”, Proc. of the IEEE, Vol. 105, No. 12, Dec. 2017 °
[ https://arxiv.org/abs/1703.09039 ]

. BRAIN-INSPIRED

Using artificial neural networks as machine learning model

Multilayer perceptron

Convolutional Neural Networks (CNN)
Long Short Term Memory (LSTM)
Spiking Neural Networks (SNN)
Hierarchical Temporal Memory (HTM)

“umec
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https://arxiv.org/abs/1703.09039

ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML

SUPPORTED BY NEW MEMORY TECHNOLOGY

"//A\

i “\* \\w

'[r 1\\
Mol
w

I /'» i
A”)\ a0 "‘/h
o \\W

Activations
Weights

X1

x2

x3

x4

= Use memory array for massive parallel analog implementation
of multiply-accumulate operations in DNN layer

= Memory array stores weights and implements
a logic function (MAC) in analog fashion

—> compute-in-memory
—> computational memory
—> neuromorphic computing
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ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML
CHALLENGES ...

Activations |. Memristor (programmable resistor) stores weight
Weights .
value W, as an analog quantity: conductance Rw;,

" pes WYy

Activation X, applied as analog voltage Vin,
3. Ohm’s law: memristor cell current ~ X,.W,
Kirchoff’s law: bit-line current ~ ) X.W,

-

Vin_| <

Top electrode Top electrode

You want  You get

99.7

99
98
95

Bottom electrode Bottom electrode

d
o
P .
"
f
il

—— — g R |

S 65,000 (2732) individually S = \ N
= \ =~ 50k a Vin 4 \
) reproducible conductance a - \ \o \
O values in each cell O l Rw_4 —= o k>
SE i N, \ \
2 F -
1k 107 10° 10° 1 Il
0.3k g . . .

. | ~yN
Resistance 1A 2 S s 3 | i=0 XiWij

) mec Readout current (A) <107° CONFIDENTIAL



Analog computing paradigms

Al Technology roadmap

Voltage V, Metal wires

Voltage V,

Voltage V)

Synaptic Tunable
weight resistance

Analog synaptic processing

New memristive
devices required

18

@ Analog AI Cores

Analog AI Cores ® With Optimized Materials
» (O Digital AI Cores
ll‘-‘i’ ' with Approximate Computing @
4\\'15; \ 1,000,000
NN
\}:‘M‘Qf' 100,000 —
L™ MW .
i ol .-
SRS ‘//ﬂf&\';.f’ L7058 £ g~
ﬂ‘ SUNKE z 1,000
N RN ) £ s
L 5 100 —ofx
2 Industry trends using
10 \/ existing base technologies
\ B 1L | for/deep learning
Y \l, Y \I, Y \l, computations

2014 2016 2018 2020 2022 2024 2026
O ARG ARG

Input Output

Neural Network architecture Compute performance efficiency

__________|Inference Training

Resistance 1-100 MQ 1-100 MQ
# Levels 100 1000
Weight set / update To desired level Symmetric
IBM Confidential Bert Jan Offrein — ofb@zu@RMGIBM Corpofafith] 'BM Corporation



Silicon Photonics for Neuromorphic circuits

Application example : Universal Multiport Interferometers 1723 4516178
l I*
» Implementation of any linear transformation between 9 ”'l
multiple channels F Uz
- Factorization of any NxN unitary matrix into a sequence of 3 Us
2x2 unitary transformations 4 U,
» composed of a regular mesh of beam splitters and phase 5 )
shifters 6 {,-'5
» straightforward fabrication using integrated photonic - Us
architectures and ready scalability . Uz

Sunil Pai et al, “Matrix Optimization on Universal Unitary Photonic Devices,” in PHYSICAL REVIEW APPLIED 11, 064044 (2019)
William R. Clements et al, “An Optimal Design for Universal Multiport Interferometers,” in Optica Vol. 3, Issue 12, pp. 1460-1465 (2016)
Reck et al, “Experimental realization of any discrete unitary operator,” in Phys. Rev. Lett. 73, 58 (1994)

Commissariat a I’énergie atomique et aux énergies alternatives B. Charbonnier -- NeuroPhotonics 5th November 2019



BIRD’S EYEVIEW OF THE TEMPO PROJECT

J
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life.augmente

E
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ECSEL 2018 ") “ M| Deep |  Spiking
(19 partners, 33 ME budget) trmpl, e | Learning Networks
---------- : il =l = = = = = = = = = = = = =
Innovative Design : CNN and SNN : - ﬁ - _
. R | g_ /I-T‘
Different Memories Anslog 4 b ) BOSCH
s 3
MRAM s M,* Valeo
FeRAM i : —
PCRAM 3 w N
OXRAM Digital H /InnoSenT
N 1 Digital NoC L rrenelosn
Silicon Technology @ == TR o
300mm Silicon wafers JaleSAlera\/;g
22 and 28nm FDSOI technology Next EU proposal: “ANDANTE” (ECSEL 2019) P

(*) The TEMPO project has received funding from the Electronic Components and Systems for European Leadership Joint Undertaking under grant agreement
No 826655. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Belgium, France, l"]'l e c

- tm@ t/itzerfand, The Netherlands.

y Forschungsfabrik
/4 Mikroelektronik

Deutschland



CEA PROPOSAL

Concept (and CEA proposal): Bring computation closer to the memory

(SRAM-Based technology)
2030: data centric

2020: heterogeneous

In Memory Computing

2023 wal
w-
2010: multi-core M taw 3
MOO™ [ Gwn
Performance = ~nb cores Gdost wal

2000: mono-core

Performance = ~frequency

Computing - SRAM

e i

Performance = ~SoC architecture

o » For which operations ?

InterConnect)

New technological paths for high performance chips targeting HPC and edge | Dutoit Denis | Nov. 6th | 21
Iy



IN-MEMORY OR NEAR-MEMORY COMPUTING?

WL (A) 1
1 A 1
)
WL (B) ; : 1
loser to Memory i, | B | 7 :
‘ Wﬂﬂm “bre-computation”
[1-4]
IMC bt “ BL (NOR) BL (AND) BaSiC LOgiC
it-cells array A (nor, and)
MMMA Logic & Arithmetic
IMC++

(nand, or, add, sub, ...)

Complex Arithmetic
mult, MAGC, ...
< System Bus > ----------- (- ----------- )- -----

Processing Element system integration Evgrythmg else
(div, cos, sin, ...)

closer to Processor

Interface levels Computation complexity

[1] K. C. Akyel, DRC?, 2016
[2] S. Aga, Compute Caches, 2017
[3] Y. Zhang, Recryptor, 2018

Source: R.Gauchi, VLSI-SoC 2019 [4] A. Agrawal, X-SRAM, 2018

New technological paths for high performance chips targeting HPC and edge | Dutoit Denis | Nov. 6th | 22




C-SRAM -> SOME RESULTS / 2 APPLICATIONS

° AES - Advanced Encryption Standard application

Cryptography Scalar vs.
C-SRAM

Clock Cycle x84
Energy (nJ) X47

°* Frame Difference application

Clock Cycle

Image size Scalar SIMD vs. Scalar
vs. CSRAM | CSRAM vs. CSRAM

4x4 xX32 x3.9 x18

VGA X6614 X260 X 32

Source: CEA Leti

New technological paths for high performance chips targeting HPC and edge | Dutoit Denis | Nov. 6th | 23




European
Processor
WHAT IS A MEMRISTOR OR A MEMRISTIVE SYSTEM? epl | E

eMemristors or better memristive devices as common roof
e Ifit's pinched it's a memristar”

Leon Chua, If it's pinched it's a memristor, IOP Publishing,
Semiconductor Science and Technology, 29 (2014), 104001 (42pp) Dyn amical System
L. Chua, S. Kang, Memristive devices and systems,

Proc. IEEE, 64 (2), 209-223, (1976)

y = h(x,u,t)
x = f(x,u,t)

ik T 1 : ¥ Memristor \

°T ’ ‘ y =R(q) "1 Memristive system
R R L e

10 F 4

' y=G(D)'V x = f(x,ut)
-1.0 . 0. 5 1.0 .
- Volt;ge O =V

Current
(4] o L%

J. Walker, Memristors and the Future
http://www.nobeliefs.com/memristor.htm

| 24



E
ARITHMETIC WITH MEMRISTIVE DEVICES epl |

uropean
Processor
Initiative

eMore visionary in-storage or in-memory computing

Memristive Computing

/\

Analog Com;outing

Large field

Neural networks,
Neuromorphic processing,
STDP

Digital Com}:uting

ory computing

Hybrid approaches:
CMOS+memristors

V4

| 4

Majority-
Inverter-Graph

Ratioed Logic

/

IMPLY Logic

CMOS-circuit like equivalent
memristor networks

In-memory computing

| 25



Adopt Foundry Model from Electronic ICs to InP PICs

Like Electronics: Make Building Blocks, Separate Design from Process

Silicon ICs ~1979 InP Photonic ICs ~2014
‘
Optical Amplifier J
Transistor ‘ '
Resistor Phase Modulatar in
—T1- i
Capacitor Polarisation Converter
i
Electrical connection Waveguide
Electronic Photonic
integration integration

/
Karl-Otto Velthaus % Fraunhofer

HHI



All-Optical Memory

Flip-Flops Based on Photons, not Electrons

Write Operation

| MSOA 1 E% il
(SOA 2k . )

BRIGHT

Integrated

PHOTONICS

% ARISTOTLE
J| UNIVERSITY OF
4 "] THESSALONIKI

2 mm

G. Mourgias-Alexandris, et al., “All-optical
10Gb/s ternary-CAM cell for routing look-up
table applications,” Opt. Express, Mar. 2018.

© Fraunhofer HHI | 2019. 11. 06. | 27

Karl-Otto Velthaus

\
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All-Optical Neuron for Computing

Breaking von-Neumann Bottlenecks spikes encode the timing between

Neuron \=—l=Elele i input pulses

Vo
| Input Pulses P P

)
=

-
n
1

Fulse Power (mwW
=
|

(4]
]
-
L

Laser Output

Pulse Power (mW)
L8]
]

Spike
Subthreshold Response
n | — I -‘i'-."ll_ -"ﬁl.h_ I | |
0 3 4 5 6 7 8
Time (ns)
. H.-T. Peng et al. “Neuromorphic Photonic
Princeton
4 mm . . Integrated Circuits” IEEE JSTQE, 2018
University
_——
Karl-Otto Velthaus Z Fraunhofer

HHI



Analog computing paradigms

Optical crossbar arrays: Integrated Solution

Concept demonstrated in bulk optics Our approach: Miniaturize using Integrated Optics
= Backpropagation training of neural networks with - Ele.c.tro—optlc copver5|.on and beam shaping optics on
hidden layers a silicon photonics chip
= Large setup, slow electro-optics, stability issues * Memory: Photorefractive thin film on silicon
Laser Diode-Based 'Laser
Optical Neural Network in — s \’ :
(2' x 2' Optical Breadboard) Transmitter Photorqfractlve

Electrical array Interaction
Input | region

¥i

array

Transmitter

Electrical
| Output

Collimating
mirror

3 Yuri Owechko and Bernard H. Soffer, "Holographic neurocomputer
utilizing laser diode light source®, 1995

29 Bert Jan Offrein — ofb@zurich.ibm.com © 2019 IBM Corporation



"""The rise of co-processors ot

Famer Trnsfoom

A Fourier transform can be obtained thanks to the
use of lenses. L

light suree l
EC K-S
An O(n"2) operation becomes an O(1) operation in H:H<9/\x

ent vehides with complex background and white foreground showing high intensity. Left: objects well

.
0 ptl CS [ r ht: one of the cars to be detected is occluded by a jeep

Figure 1: Fourier Tra
and v are normalize

* & lens. Ly is the collimating lens, Ly is the Fourier transform lens, v e

nates in the transform plane

* Optical Synthetic Aperture Radar Processor
* Optical Correlators for Pattern Recognition

o Plate 3 Optical correlations obtained with the images of Plate 2. Top: cormrelation planes, bottom: three-dimensional
L J O I nt Tra n Sfo r‘m CO rre I at O r’ etc - plots of the correlation planes. Left: the images with the two cars entirely separated. Right: the rightmost

correlation peak corresponding to the occluded car. The white foreground correlation corresponds to the small hill
behind the comrelation peaks

06/11/2019 LightOn SAS 0

Source:

. Alain Bergeron, (2000),"Optical correlator for industrial applications, quality control and
target tracking", Sensor Review, Vol. 20 Iss 4 pp. 316 — 321

. http://www.phys.unm.edu/msbhahae/Optics%20Lab/Fourier%200ptics.pdf

. Fourier Optics, J. W. Goodman, Mcgraw-Hill, 1996




Create and deploy hardware ‘9"

v "Big & Fat” Data Results O
=

., OPU

,——————————————————————

-~

4

Spatial Light Modulator

Data

processin
CPU/ GP%

Data pre- Laser

processing

Optical Random e
Projections

e

Qe

)
>
N
>
)
N
\
~

g NN EEE NN =N Ty,

01111001010101... Data in Data out 010001... V4

\________-____-___-___—

Copyright LightOn




Description of a future achievement

Ambitious but realistic

Description of the innovation

Quantitative information

How this has been prepared and achieved: European players involved

Translation of the advantages into answer to societal challenges: for people directly

connected to the field, for the European citizen

EXDCI-2 General Presentation December 3, 2019
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- Some elements that will help you to guide your research, to assess it potential for
downstream users, to compare it to state-of-the-art other technological solutions. Just to
mention some of the ideas we have in mind:

-+ Data sets

«  Benchmarks

- Small application kernels
- Communication patterns

- Symmetrically you may have challenges that you would like upstream teams to solve. If you
are able to define what you are interested to get, it can help other research teams to focus

on your concerns.

uropsan.
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34

Take away

Future will be diversity

Integration is a key element

EXDCI-2 General Presentation

Quantum
Engine

Coordination Engine

Von Neumann style

CMOS Technology
binary data

Semantic@Numerical
Engine Engine

Decision
Engine

. Eurcpean
December 3, 2019 & Computing



Potential recommendations

+ For developing European technologies
* New long term projects with real co-design but on very little kernels

- Specification of API at package level

+ For application development
- Modular approach with skeleton of operations that could be accelerated

« When possible analyze data precision requested by your computation

exdci
o @ o

35 EXDCI-2 General Presentation December 3, 2019 i Comping
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