

EuroLab-4-HPC

Foundations of a European Research Center of Excellence in HPC Systems

Coordinator: **Per Stenström**Chalmers University of Technology
Sweden

Consolidation of HPC Systems Research in Europe

Before EuroLab-4-HPC:

- Key HPC stakeholder community (research, suppliers, users) was fragmented and uncoordinated
- In particular: Uncoordinated research community

EuroLab-4-HPC focus:

- Align research and other stakeholders around a common long-term research agenda
- Train future technology leaders
- Accelerate innovation in the HPC domain

EuroLab-4-HPC Achievements

Consolidation of research excellence in HPC systems

- EuroLab HPC Vision: a long-term research agenda
- A validated HPC curriculum and best practices
- Piloted business prototyping for accelerating innovations in HPC technologies
- **Ecosystem building**: Links to ETP4HPC, PRACE, EXDCI and other HPC stakeholders
- Business model for self-sustainability

Consortium

- Expertise spans system layers from applications via system software to platform architecture
- Strong links to HiPEAC, ETP4HPC, PRACE and EXDCI

Agenda

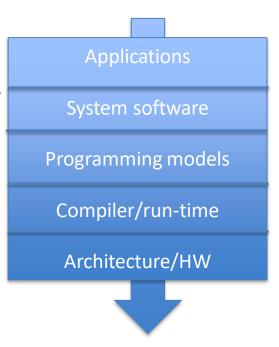
- Research excellence
- Education
- Innovation
- Ecosystem building
- Concluding remarks

The EuroLab HPC Vision

Roadmap Target

- Currently strong efforts are taken in US, China, Japan, and Europe towards the Exascale computers to be reached in 2020-2022.
- Our objective:

Long-term vision for excellence in European HPC research beyond Exascale targeting 2023—2030



2017-09-08

EuroLab-4-HPC Roadmap Scope

- Include all layers of HPC stack
- Cross-cutting issues: green ICT, energy and dependability
- Adjacent domains: highperformance embedded, data centres, big data
- Close collaboration with other roadmaps:
 - HiPEAC Vision,
 - ETP4HPC SRA Strategic Research Agenda (until Exascale)

EuroLab-4-HPC Roadmap Approach

Long-term (2023-2030) => highly speculative:

- 1. Select disruptive technologies that may be technologically feasible in the next decade
- 2. Assess the potential hardware architectures and their characteristics
- Assess what that could mean from different HPC perspectives (applications, software, architecture)
 "IF technology suitable
 THEN foreseeable impact on HW/SW could be"

Topics

- Disruptive Technologies
- New technologies and hardware architectures
- System software and programming environment
- Vertical challenges: Green ICT, energy and resiliency
- HPC applications: evolution and requirements
- Convergence of embedded HPC, data centers for big data, and HPC

2017-09-08

Emerging Applications and SW Pull

For example,

- Data mining and analysis of big data
 - Pre- and post-processing, and data assimilation
- Real-time and interactive analysis and visualisation (Industry 4.0, smart cities, connected autonomic cars)
- Deep learning/neuromorphic
- Task parallelism replaces bulk synchronous
- New expert programming (DSLs)
- Approximate computing (concerns SW and HW)
- Homomorphic cryptography

Disruptive Technologies Push

- Sustaining Technology (improving HW in ways generally expected)
 - Continuous CMOS Scaling
 - Die Stacking 3D-Chip
- **Disruptive Technology in Hardware/VLSI** (innovation that creates a new line of HPC HW superseding existing HPC techniques):
 - NVM Technologies (Memristors, STT-RAM)
 - Photonics
- Disruptive technology (alternative ways of computing)
 - Resistive Computing
 - Neuromorphic Computing
 - Quantum Computing
- Beyond CMOS
 - Nanotubes
 - Graphene
 - Diamond

Summary of Potential Long-Term Impacts of Disruptive Technologies for HPC Hardware

- Processor Logic
 - Evolutionary: CMOS technology may continuously scale in next decade to 8-4 nm
 - Innovative: Die stacking DRAM dies (Micron/Intel MCDRAM) and 3D many-core microprocessors with reduced wire length.
 - Disruptive: photons, graphene, or nanotube => much higher clock rates, less heat => disruptive change of computing.
- Memory Hierarchy
- Potential New Hardware Accelerators

HPC Curriculum and Best Practices

- Inventory of needs and supply of HPC courses for future HPC technology experts
- Focus is on
 - Defining an HPC curriculum
 - Best practices for on-line learning
 - Launch of training pilots

Outcome: Validated HPC
Curriculum and best
practices for on-line
learning

HPC Curriculum

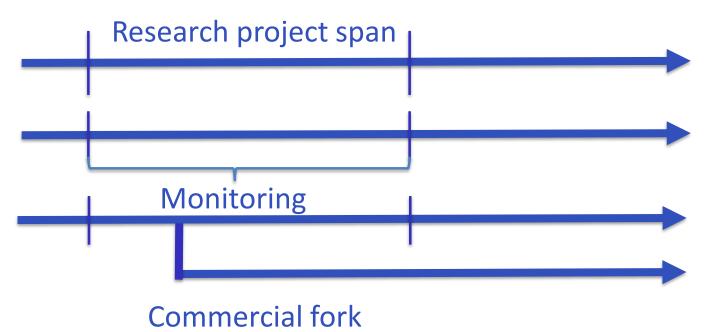
- Analysis of requirements and input from:
 - Partners from the project
 - Training providers PRACE, ACM SIGPLAN HPC, EIT ...
 - Online survey used to gather responses from individuals
- Course inventory: identification of existing courses and programmes
- Proposals of core & supplemental courses
 - Mapping courses to potential programs
 - Broader educational goals of the curriculum
 - Potential attendees considered EE/CS/Maths/Physics majors
 - Duration of program studies 2 years versus 1 year

HPC Curriculum

- Parallel Computer Architectures
- Scalable parallel algorithms
- Programming with MPI
- Data Parallel Computing
- Programming Shared Memory Parallel Systems
- Programming Multi-core and Many-core Systems
- Performance Engineering
- Programming Heterogeneous and Accelerated Systems
- Large scale Scientific Computation
- Data Science Fundamentals

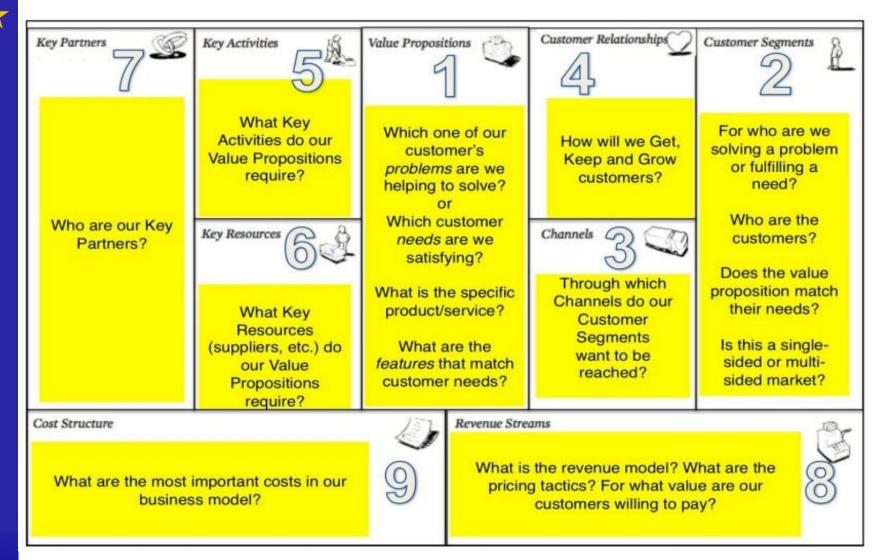
Courses span across layers

Best Practices in Online Training

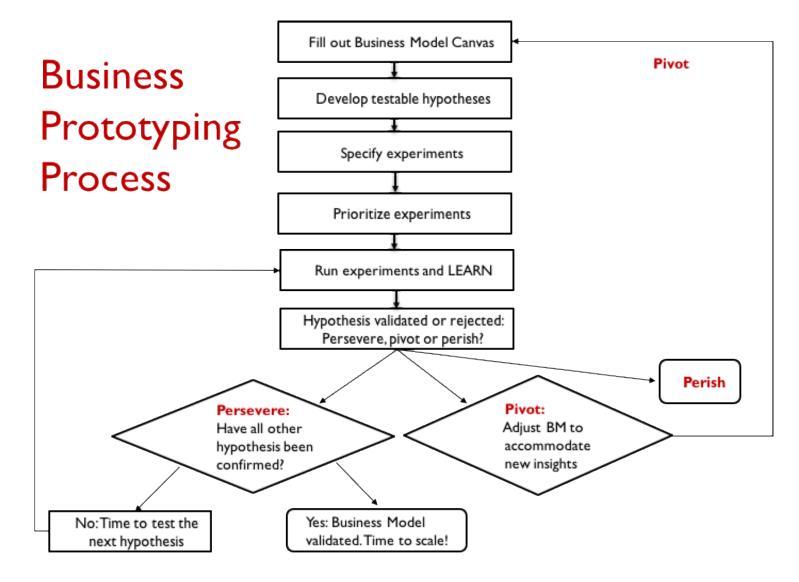

- MOOCs: support multi-course programs, nano-degrees, micro-masters, specializations from different institutions
- MOOCs are typically used:--
 - Highlight beacon areas of research
 - To improve public understanding of science
 - Aid recruitment for traditional & distance learning courses
 - One MOOCs unit is equivalent to 1-1.5 ECTS credits

Acceleration of Innovation

Problem: Time to market of research ideas


Outcome: Business prototyping – acceleration of uptake

of research idea: Business prototyping


Business Model Canvas – Mapping Hypotheses

Business Prototyping – Testing Hypotheses

Community Building

- Common research platforms: vehicle for common research goals
- Instrument: Cross-site visit program
- Mechanism for linking communities to other communities

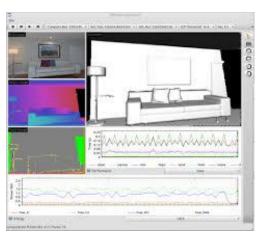
Outcome: Strengthening of links between research groups in HPC systems and between HPC stakeholder groups

Events Organized Year 1

- EuroLab-4-HPC kickoff Milan Computer Systems Week, September
- HiPEAC 2016 Conference, January, Prague
- EuroLab4HPC Computer Systems Week Porto, April
- HPC Summit Prague, May

HPC Summit Prague

- "Why is European HPC running on US Hardware? – EuroLab4HPC: Connecting HPC and Systems
 - Keynote: Creation of a European HPC Solution?,
 Prof. John Goodacre
 - 3 further talks



Open-Source Activities

- Open source workshop in Porto
 - Holistic benchmarking in 3D Robot Vision: the SLAMBench open source framework, by Luigi Nardi, Imperial College London
 - Open Source Hardware: Our experience releasing the PULP platform, by Frank K. Gürkaynak, ETH Zürich

New Applications

- CloudSuite 3.0:
 - Open-source, publicly available at Github
 - Add Big Data analytics (cloud convergence w/ HPC)
 - Integrated into Google PerfKit (supports all major cloud providers)
- Engagement: Four events
 - Keynotes, position talks, workshops, panel sessions
 - Tutorials at HiPEAC & EuroSys '16

Summary

EuroLab-4-HPC achievements

- EuroLab HPC Vision: a long-term research agenda
- A validated HPC curriculum and best practices
- Piloted business prototyping for accelerating innovations in HPC technologies
- Ecosystem building: Links to ETP4HPC, PRACE, EXDCI and other HPC stakeholder

EuroLab-4-HPC2 will strengthen all these efforts

Thank you! www.eurolab4hpc.eu

